- AI 大模型应用数据中心的数据分析架构
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《AI大模型应用数据中心的数据分析架构》关键词:数据中心、AI大模型、数据分析、架构设计、应用实践摘要:本文深入探讨了AI大模型在数据中心数据分析架构中的应用,从数据中心背景、AI大模型架构与技术、数据处理与分析技术、AI大模型应用与实践等多个方面,全面解析了AI大模型如何助力数据中心实现高效数据分析和智能处理,为读者提供了系统的理论指导和实际案例分析。第一部分:数据中心背景与AI大模型概述第1章
- 入门到入土,Java学习 day17(Lambda表达式,集合进阶)
慕容魏
java学习python
publicstaticStringtoString(数组)把数组拼接成一个字符串publicstaticintbinarySearch(数组,查找的元素)二分查找法找元素publicstaticint[]copyOf(原数组,新数组长度)拷贝数组长度小就拷贝几个,长度一样完全拷贝,长度大后面补默认值publicstaticint[]copyOfRange(原数组,起始索引,结束索引)拷贝数组(指
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- HR SaaS平台排行榜:细数2025年中国最具商业价值的十大HR SaaS平台
weixin_54980836
大数据人工智能
在当今竞争激烈且瞬息万变的商业环境中,企业数字化转型已不再是可选项,而是生存与发展的必经之路。人力资源管理作为企业运营的核心支柱之一,正经历着前所未有的深刻变革。传统的HR管理模式已逐渐暴露出效率低下、数据整合困难、决策支持不足等问题,难以满足现代企业对精准、高效、智能人力资源管理的需求。在此背景下,HRSaaS系统应运而生,成为企业优化薪酬管理、提升人力资源效率、实现数字化转型的关键工具。本文将
- 为什么Redis对大 Key(Large Key)和大对象不友好?怎样优化?
风一样的树懒
redis数据库缓存
你好,我是风一样的树懒,一个工作十多年的后端专家,曾就职京东、阿里等多家互联网头部企业。公众号“吴计可师”,已经更新了近百篇高质量的面试相关文章,喜欢的朋友欢迎关注点赞Redis对大Key(LargeKey)和大对象不友好,主要源于其内存管理模型、单线程架构和数据结构特性。以下从性能影响、内存管理、集群限制三个维度解析原因,并提供优化方案:一、Redis对大Key不友好的核心原因1.性能瓶颈单线程
- 国家地理信息公共服务平台的天地图
gys9895
百度地图js
文章目录一、国家地理信息公共服务平台的天地图二、地图转换1.GIS数据格式坐标转换(地球坐标WGS84、GCJ-02、火星坐标、百度坐标BD-09、国家大地坐标系CGCS2000)2.读入数据总结一、国家地理信息公共服务平台的天地图三大地图付费后,仍可用的免费商用地图APIFailedtoresolveloader:sass-loader如果是本地测试,那么对应的白名单设置为null第一步,在Vu
- 院士领衔、IEEE Fellow 坐镇,清华、上交大、复旦、同济等专家齐聚 2025 全球机器学习技术大会
CSDN资讯
机器学习人工智能
随着Manus出圈,OpenManus、OWL迅速开源,OpenAI推出智能体开发工具,全球AI生态正经历新一轮智能体革命。大模型如何协同学习?大模型如何自我进化?新型强化学习技术如何赋能智能体?围绕这些关键问题,由CSDN&Boolan联合举办的「2025全球机器学习技术大会」将于4月18-19日在上海隆重举行。大会云集院士、10所高校科研工作者、近30家一线科技企业技术实战专家组成的超50位重
- 智享三代实景无人直播:实景呈现+智能互动,以科技之力稳抓流量与商机
x13257272926
科技人工智能
传统直播中,虚拟背景虽能带来简洁美观的视觉效果,但往往缺乏真实感和可信度。智享三代实景无人直播则反其道而行之,着重强调实景呈现。无论是实体店铺的内部环境,还是工厂的生产车间,亦或是户外产品的实际使用场景,都能通过高清摄像头真实、全面地展示在观众面前。例如,一家经营户外运动装备的商家,利用智享三代实景无人直播,将直播间搭建在风景秀丽的郊外露营地。观众不仅能清晰看到帐篷的搭建过程、帐篷内部的空间布局和
- 【大模型LLM面试合集】分布式训练_总结
X.AI666
大模型LLM面试合集面试分布式人工智能语言模型
9.总结1.数据并行数据并行,由于其原理相对比较简单,是目前使用最广泛的分布式并行技术。数据并行不仅仅指对训练的数据并行操作,还可以对网络模型梯度、权重参数、优化器状态等数据进行并行。我们首先以PyTorch数据并行的发展(DataParallel、DistributedDataParallel、FullyShardedDataParallel)为主线进行讲述了数据并行的技术原理。同时,也简述了D
- 【vLLM 学习】使用 TPU 安装
HyperAI超神经
vLLM学习人工智能vLLM深度学习TPU机器学习教程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM使用PyTorchXLA支持GoogleCloudTPU。依赖环境GoogleCloudTPUVM(单主机和多主机)TPU版本:v5e、v5p、v4Python:3.10安装选项:href=“https://v
- 一文搞懂MCU和SoC的核心差异:从架构到应用场景全解析
Electron-er
单片机架构嵌入式硬件
目录引言一、从“芯片大脑”看本质:架构设计的哲学差异1.MCU:单一任务的执行专家2.SoC:系统级集成的超级平台二、实战对比:六大维度拆解差异1.性能指标对比2.开发模式对比三、选型指南:如何选择MCU或SoC?1.选择MCU的场景2.选择SoC的场景四、技术演进:MCU与SoC的融合趋势1.MCU的进化方向2.SoC的突破方向五、开发者避坑指南结语标签:MCUvsSOC、嵌入式系统、芯片选型、
- 「 机器人 」扑翼飞行器通过总气动力控制四自由度运动方法
Robot_Starscream
「机器人学」机器人人工智能算法
一、前言在扑翼飞行中,总气动力(TotalAerodynamicForce)是指扑翼在运动过程中受到的所有空气动力作用的合力。它是由以下两种主要力的合成结果:1.升力(Lift,):垂直于空气流方向的力,用于支持飞行器(或生物)的重量。2.阻力(Drag,):平行于空气流方向的力,用于抵抗前进的运动。二、总气动力的物理意义总气动力F_{uk}的物理意义在于描述了扑翼在不同运动状态下所受到的气动力合
- 一文吃透C++数组:概念与操作大揭秘
大雨淅淅
C++开发数据库c++开发语言
目录一、C++数组初印象二、C++数组概念剖析2.1数组定义与本质2.2数组声明与初始化方式2.2.1声明2.2.2初始化2.3数组元素访问三、C++数组操作全解析3.1遍历数组3.1.1for循环遍历3.1.2范围for循环遍历3.2修改数组元素3.3获取数组大小3.4多维数组操作3.4.1二维数组3.4.2.多维数组拓展3.5数组作为函数参数3.5.1传数组名3.5.2函数原型声明四、C++数
- 《TypeScript 高级类型实战指南:解决真实项目的 7 大痛点》
前端极客探险家
typescript前端vue.jsreact.js
目录标题本文解决的问题:一、表单系统:深度类型约束(可直接用于AntDesign表单)痛点:表单校验逻辑与TS类型脱节二、API响应:自动解包层叠类型(Axios拦截器整合)痛点:后端返回结构嵌套导致类型冗余三、ReduxToolkit:Action类型自动工厂痛点:手写ActionType容易出错四、组件Prop:动态约束联合类型(Vue/React通用)痛点:多形态组件的Prop类型难以维护五
- 30个节点的Doris集群,每个节点有2块7TB的SSD盘,12块8TB的机械盘,分区和分桶的最佳实践
fzip
DorisDoris分区分桶
针对30个节点(每个节点配备2块7TBNVMe盘+12块8TBSATA盘)的Doris集群,以下是分区与分桶的最佳实践方案:一、硬件资源规划与存储优化存储介质分层•NVMe盘:用于存储热数据分区(如最近3天数据)、元数据和高频查询表,利用其高IOPS特性提升实时查询性能。•SATA盘:存储冷数据分区(如历史数据)、大宽表和批量导入的中间数据,通过成本优势支撑海量存储。磁盘负载均衡•每个节点的14块
- 定了!粉丝破800w的陈雷老师确认出席创客匠人5000人的“全球创始人IP领袖高峰论坛”
创小匠
tcp/ip大数据人工智能
正式官宣!全网粉丝800W+、中医学博士——陈雷,确认应邀参加创客匠人5000人“全球创始人IP领袖高峰论坛”,共襄知识服务领域的年度盛宴!由创客匠人发起的“全球创始人IP领袖高峰论坛”将在2024年12月26日-28日在厦门市国际博览会议中心隆重举行。大会邀请到众多行业内的顶尖大咖和领袖人物亲临现场,围绕“IP、趋势、战略、创新、增长”五大关键词,分享他们的宝贵经验和独到见解。这将是2024年底
- AI大模型推理加速:技术与实践详解
AI大模型学习者
人工智能
近年来,AI大模型在自然语言处理、计算机视觉等领域取得了突破性进展。然而,大模型的推理速度却成为其落地应用的瓶颈。本文将详细探讨AI大模型推理加速的技术手段和实践经验,并结合具体案例进行分析。一、挑战与机遇1.1挑战庞大的参数量:大模型通常拥有数十亿甚至数千亿个参数,例如GPT-3拥有1750亿个参数。如此庞大的参数量导致模型文件体积巨大,加载和推理都需要消耗大量的内存和计算资源。复杂的计算图:大
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- 做亚马逊、temu、速卖通、希音自养号采购砍单率过高需要怎么解决
刘哥测评技术zcwz626
经验分享网络协议网络安全服务器
做无货源模式的卖家越来越多,自养买家号采购时遭遇大砍单是一个普遍而棘手的问题。为了避免这一问题,需要从技术环境搭建、账号权重养成以及下单技巧等多个方面进行系统化操作。以下是一些具体的建议和策略:一、技术环境搭建:确保账号独立性1.硬件隔离:使用独立设备或采用云服务器等隔离技术,确保每个账号拥有唯一的硬件标识,如IMEI、MAC地址等。在同一设备上登录多个账号要确保每个账号都是独立的环境,以防止硬件
- 线路板打样中的PCB拼版技术如何为中小企业节省30%以上成本?
捷配科技
制造pcb工艺捷配
线路板打样和批量生产的成本控制对中小企业来说非常关键,本文将解析PCB拼版的五大核心价值,揭示中小企业在SMT贴片环节的降本秘诀。一、破解线路板打样的成本困局中小企业在小批量生产时常面临两难选择:单独加工导致设备利用率低下,而传统拼版方案又存在设计缺陷。二、PCB拼版技术的五大降本优势1.设备利用效率倍增通过二合一或四合一拼版设计,SMT产线单次印刷可完成多板加工。实测数据显示,采用V-CUT拼版
- LibreTranslate的本地部署与应用服务开发
一望无际的大草原
高级数据应用后端人工智能大模型翻译源码部署
最近在关注大模型预训练文章和应用服务开发,有时候需要借助翻译工具,使用起来都不太方便,就找了一下类似的常见语言的翻译方案,无意中看到一个开源翻译方案(即LibreTranslate),对于通用和计算机类内容的翻译效果还是不错的,因此就对开源翻译代码进行了本地部署和应用服务开发及测试。主要对源码的启动参数、api服务、认证服务和访问权限等内容进行了补充完善,并将依赖的翻译argos-translat
- Sass (Scss) 与 Less 的区别与选择
王强你强
sassscssless
在前端开发中,CSS预处理器如Sass(SyntacticallyAwesomeStylesheets)和Less被广泛使用,它们通过引入变量、嵌套规则、混合、函数等特性,使CSS的开发过程更加高效和灵活。Sass和Less作为两大主流CSS预处理器,各自具有独特的优点和特性。本文将详细探讨Sass(特别是其语法扩展Scss)与Less之间的区别,并提供选择建议。1.语法差异Sass最初是使用缩进
- 【Agent实战】发票信息识别提取专家(AI +OCR技术结合ChatGPT4o能力+结构化prompt(CoT、One-shot等)+Knowledge - RAG+API工具Agent项目实践)
姚瑞南
大模型落地探索及agent搭建RAG技术应用探索prompt实战应用案例人工智能ocrpromptAIGCchatgptgptagi
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录1.项目背景2.项目目标定性:定量:3.发票核心字段概述4.关键举措5.Workflow设计思路及编排5.1整体设计思路5.2流程搭建及解读流程解读:代码节点:解析agent数据
- 深入解析:大型机器学习模型的基本概念与特点
AI大模型-大飞
机器学习人工智能AI大模型AI神经网络大模型
大模型是指具有大规模参数和复杂计算结构的机器学习模型。本文从大模型的基本概念出发,对大模型领域容易混淆的相关概念进行区分,并就大模型的发展历程、特点和分类、泛化与微调进行了详细解读,供大家在了解大模型基本知识的过程中起到一定参考作用。本文目录如下:·大模型的定义·大模型相关概念区分·大模型的发展历程·大模型的特点·大模型的分类·大模型的泛化与微调1.大模型的定义大模型是指具有大规模参数和复杂计算结
- Agent相关文章目录
东哥说-MES|从入门到精通
AI人工智能人工智能规格说明书制造设计规范机器学习自然语言处理
最近写了不少的文章,为了方便阅读,特意重新整理了关于Agent相关的文章链接,也便于大家阅读如何在本地部署DeepSeek本地部署_chatbox显示思考过程-CSDN博客文章浏览阅读853次,点赞29次,收藏31次。最近国产大模型DeepSeek非常火,但由于访问人数过多,经常出现反应迟缓甚至宕机的情况。幸运的是,DeepSeek是一个开源模型,我们可以通过本地部署在自己的终端上随时使用,而且部
- 场景题:100G的文件里有很多id,用1G内存的机器排序,怎么做?
海量数据排序思路核心方案:外排序(分治+多路归并)MapReduce外排序是指数据量太大,无法全部加载到内存中,需要将数据分成多个小块进行排序,然后将排序后的小块合并成一个大的有序块1.分块排序(Map阶段)分块策略按1G内存容量限制,将100G文件拆分为200个500MB分块(保留内存用于排序计算和系统开销)内存排序每个分块加载至内存后:①使用快速排序(时间复杂度O(nlogn))②去重优化:若
- 南京大学×百度“星河杯”AI大模型创意校园赛正式起航
3月9日,教育部长怀进鹏在十四届全国人大二次会议民生主题记者会上,谈到了人工智能+教育的重要性。他强调,要把人工智能技术深入到教育教学和管理的全过程和全环节,研究其有效性和适应性,让青年一代更加主动地学习,让教师更加创造性地教学。南京大学早在年初就已经敏锐地洞察到了人工智能的重要性,在新学期工作布置会上,发布了一个前瞻性决策:24年9月面向全体本科新生开设“人工智能通识核心课程体系”,南京大学党委
- 百度官方!打造「大模型全开发周期系列课程」,AI应用开发入门课率先发布!(内含英雄帖)
在这个大模型技术日新月异的时代,AI的潜力正被无限释放,改变着我们的工作和生活方式。你是否渴望成为这场变革的参与者?你是否也想在这个大模型时代中抢占先机?那“学习AI”、“使用AI”、“入局AI”我们真的可以受益吗?学习辅助:将AI使用融入学习当中,依据当前学习情况,整理重点难点,让复习有的放矢,更高效掌握知识点。效率提升:帮助处理繁琐重复的工具,如数据分析师使用AI识别数据中的关键信息,自动整理
- 大模型(DeepSeek等)是否会动摇AI工程师的工作?
点我头像干啥
Ai深度学习人工智能AI编程计算机视觉
引言近年来,人工智能(AI)领域取得了突飞猛进的发展,尤其是大模型(如GPT-3、BERT、DeepSeek等)的出现,极大地推动了自然语言处理(NLP)、计算机视觉(CV)等领域的进步。大模型凭借其强大的泛化能力和广泛的应用场景,逐渐成为AI领域的核心技术之一。然而,随着大模型的普及,一个备受关注的问题浮出水面:大模型是否会动摇AI工程师的工作?本文将从多个角度探讨这一问题,分析大模型对AI工程
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息