AQS之共享锁和ConditionObject原理的个人理解

AQS 主要有两种具体实现,共享锁和排他锁,排他锁简单点,我先讲共享锁

1、共享锁

关键方法 AbstractQueuedSynchronizer#acquireShared
public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0) // 尝试获取arg个资源,AQS的state - arg > 0并且赋值成功以后, 返回一个剩余量,若大于等于0,则获取成功
            doAcquireShared(arg); //要开始让请求的线程获取资源了
}
关键方法 AbstractQueuedSynchronizer#doAcquireShared
private void doAcquireShared(int arg) {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        /** 其实这里蛮关键的,多个线程同时跑进来,然后会尝试唤醒头结点的后继节点的线程,然后线程才能进入代码的临界区,
                         *不过还要再详细讲一下  {@link  setHeadAndPropagate#setHeadAndPropagate}的细节才好理解
                         */
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                /**
                *如果当前线程现在所在的节点的前继不是头节点,
                *则无法获取锁(资源) 那么会把当前节点前面所有状态为CANCEL的节点去掉,
                *循环往复,知道当前节点的前继节点状态为 SIGNAL为止
                *然后会挂起当前线程如果不能唤醒的话,然后记录下中断状态啥的
                */
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }


关键方法 AbstractQueuedSynchronizer#setHeadAndPropagate
 private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; // Record old head for check below
        setHead(node);
        /*
         * Try to signal next queued node if:
         *   Propagation was indicated by caller,
         *     or was recorded (as h.waitStatus either before
         *     or after setHead) by a previous operation
         *     (note: this uses sign-check of waitStatus because
         *      PROPAGATE status may transition to SIGNAL.)
         * and
         *   The next node is waiting in shared mode,
         *     or we don't know, because it appears null
         *
         * The conservatism in both of these checks may cause
         * unnecessary wake-ups, but only when there are multiple
         * racing acquires/releases, so most need signals now or soon
         * anyway.
         */

        /**以上是原作者的注释,接下来我讲下我自己的理解
         * propagate 说白了就是剩余的资源数目(总资源数肯定要大于0,要不然怎么玩?)
         * 如果propagate == 0 的时候,其实肯定有线程进入了 {@link doReleaseShared} 
         * 在propagate == 0 && h.waitStatus == 0 的时候,其实没有必要去唤醒后继节点,没有资源了,当前线程可以直接进入临界区,跳过就好了,如果
         * propagate > 0 的话,有剩余资源,所以进去一下唤醒后继节点的比较好。。。 
         * h.waitStatus < 0 的话,如果为{@link Node.PROPAGATE}辣么,进入 {@link AbstractQueuedSynchronizer#doReleaseShared}
         * 里面的for循环基本就直接出来了,如果是 {@link Node.SIGNAL}会唤醒后继的节点 
         * 所以嘛,还是要进去,就算是 PROPAGATE的状态,很快也会出来
         */
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
            (h = head) == null || h.waitStatus < 0) {
            Node s = node.next;
            if (s == null || s.isShared())
                doReleaseShared();
        }
    }
AbstractQueuedSynchronizer#doReleaseShared
private void doReleaseShared() {
        /*
         * Ensure that a release propagates, even if there are other
         * in-progress acquires/releases.  This proceeds in the usual
         * way of trying to unparkSuccessor of head if it needs
         * signal. But if it does not, status is set to PROPAGATE to
         * ensure that upon release, propagation continues.
         * Additionally, we must loop in case a new node is added
         * while we are doing this. Also, unlike other uses of
         * unparkSuccessor, we need to know if CAS to reset status
         * fails, if so rechecking.
         */
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    /**
                     * 这里比较好理解,如果头结点是SIGNAL状态,唤醒后继节点
                     */
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);
                }
                /**
                 * 这里之所以要把状态先设置为0,就是为了上个方法
                 * {@link  AbstractQueuedSynchronizer#setHeadAndPropagate}
                 * 中的状态判断,头结点状态为0的话,那么一定有个线程在这里运行,
                 * 会唤醒后继节点,并且至少有一个线程会把状态设置为 PROPAGATE
                 * 这样后面进来的线程在头结点不变的情况下,会很快的跑出这个for循环的
                 */
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }
共享锁的释放锁
 public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

比较简单,跟获取锁相比,只需要自定义这么具体地分配资源 tryReleaseShared 就好了

ConditionObject的队列

这个队列和和AQS的CLH队列有密切的联系,当需要await的时候我们添加一个节点到CondtionObject的队列末尾,然后阻塞住相应的线程,当需要signal释放的时候,transferForSignal会把ConditionObject的首个节点添加到AQS队列尾部,然后把倒数第二个节点(enq方法保证一定会有的)状态设置为SIGNAL,方便后续唤醒。


 public final void await() throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
                // 在这里,我们会阻塞线程
                LockSupport.park(this);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }


  /**
         * Adds a new waiter to wait queue.
         * @return its new wait node
         */
        private Node addConditionWaiter() {
            Node t = lastWaiter;
            // If lastWaiter is cancelled, clean out.
            if (t != null && t.waitStatus != Node.CONDITION) {
                unlinkCancelledWaiters();
                t = lastWaiter;
            }
            Node node = new Node(Thread.currentThread(), Node.CONDITION);
            if (t == null)
                firstWaiter = node;
            else
                t.nextWaiter = node;
            lastWaiter = node;
            return node;
        }
 final boolean transferForSignal(Node node) {
        /*
         * If cannot change waitStatus, the node has been cancelled.
         */
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;

        /*
         * Splice onto queue and try to set waitStatus of predecessor to
         * indicate that thread is (probably) waiting. If cancelled or
         * attempt to set waitStatus fails, wake up to resync (in which
         * case the waitStatus can be transiently and harmlessly wrong).
         */
        /*
         * 这里返回倒是第二个节点的指针或者说是引用,如果状态是CANCEL或者 
         * 无法设置为SIGNAL,直接唤醒最后一个节点的线程,
         * 这样一样可以把倒是第二个节点的状态设置为SIGNAL
         * {@see AbstractQueuedSynchronizer#shouldParkAfterFailedAcquire}
         */
        Node p = enq(node);
        int ws = p.waitStatus;
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }

你可能感兴趣的:(AQS之共享锁和ConditionObject原理的个人理解)