聊聊flink的BoundedOutOfOrdernessTimestampExtractor

本文主要研究一下flink的BoundedOutOfOrdernessTimestampExtractor

BoundedOutOfOrdernessTimestampExtractor

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/functions/timestamps/BoundedOutOfOrdernessTimestampExtractor.java

/**
 * This is a {@link AssignerWithPeriodicWatermarks} used to emit Watermarks that lag behind the element with
 * the maximum timestamp (in event time) seen so far by a fixed amount of time, t_late. This can
 * help reduce the number of elements that are ignored due to lateness when computing the final result for a
 * given window, in the case where we know that elements arrive no later than t_late units of time
 * after the watermark that signals that the system event-time has advanced past their (event-time) timestamp.
 * */
public abstract class BoundedOutOfOrdernessTimestampExtractor implements AssignerWithPeriodicWatermarks {

    private static final long serialVersionUID = 1L;

    /** The current maximum timestamp seen so far. */
    private long currentMaxTimestamp;

    /** The timestamp of the last emitted watermark. */
    private long lastEmittedWatermark = Long.MIN_VALUE;

    /**
     * The (fixed) interval between the maximum seen timestamp seen in the records
     * and that of the watermark to be emitted.
     */
    private final long maxOutOfOrderness;

    public BoundedOutOfOrdernessTimestampExtractor(Time maxOutOfOrderness) {
        if (maxOutOfOrderness.toMilliseconds() < 0) {
            throw new RuntimeException("Tried to set the maximum allowed " +
                "lateness to " + maxOutOfOrderness + ". This parameter cannot be negative.");
        }
        this.maxOutOfOrderness = maxOutOfOrderness.toMilliseconds();
        this.currentMaxTimestamp = Long.MIN_VALUE + this.maxOutOfOrderness;
    }

    public long getMaxOutOfOrdernessInMillis() {
        return maxOutOfOrderness;
    }

    /**
     * Extracts the timestamp from the given element.
     *
     * @param element The element that the timestamp is extracted from.
     * @return The new timestamp.
     */
    public abstract long extractTimestamp(T element);

    @Override
    public final Watermark getCurrentWatermark() {
        // this guarantees that the watermark never goes backwards.
        long potentialWM = currentMaxTimestamp - maxOutOfOrderness;
        if (potentialWM >= lastEmittedWatermark) {
            lastEmittedWatermark = potentialWM;
        }
        return new Watermark(lastEmittedWatermark);
    }

    @Override
    public final long extractTimestamp(T element, long previousElementTimestamp) {
        long timestamp = extractTimestamp(element);
        if (timestamp > currentMaxTimestamp) {
            currentMaxTimestamp = timestamp;
        }
        return timestamp;
    }
}
  • BoundedOutOfOrdernessTimestampExtractor抽象类实现AssignerWithPeriodicWatermarks接口的extractTimestamp及getCurrentWatermark方法,同时声明抽象方法extractAscendingTimestamp供子类实现
  • BoundedOutOfOrdernessTimestampExtractor的构造器接收maxOutOfOrderness参数用于指定element允许滞后(t-t_w,t为element的eventTime,t_w为前一次watermark的时间)的最大时间,在计算窗口数据时,如果超过该值则会被忽略
  • BoundedOutOfOrdernessTimestampExtractor的extractTimestamp方法会调用子类的extractTimestamp方法抽取时间,如果该时间大于currentMaxTimestamp,则更新currentMaxTimestamp;getCurrentWatermark先计算potentialWM,如果potentialWM大于等于lastEmittedWatermark则更新lastEmittedWatermark(currentMaxTimestamp - lastEmittedWatermark >= maxOutOfOrderness,这里表示lastEmittedWatermark太小了所以差值超过了maxOutOfOrderness,因而调大lastEmittedWatermark),最后返回Watermark(lastEmittedWatermark)

实例

    public static void main(String[] args) throws Exception {

        final int popThreshold = 20; // threshold for popular places

        // set up streaming execution environment
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        env.getConfig().setAutoWatermarkInterval(1000);

        // configure the Kafka consumer
        Properties kafkaProps = new Properties();
        kafkaProps.setProperty("zookeeper.connect", LOCAL_ZOOKEEPER_HOST);
        kafkaProps.setProperty("bootstrap.servers", LOCAL_KAFKA_BROKER);
        kafkaProps.setProperty("group.id", RIDE_SPEED_GROUP);
        // always read the Kafka topic from the start
        kafkaProps.setProperty("auto.offset.reset", "earliest");

        // create a Kafka consumer
        FlinkKafkaConsumer011 consumer = new FlinkKafkaConsumer011<>(
                "cleansedRides",
                new TaxiRideSchema(),
                kafkaProps);
        // assign a timestamp extractor to the consumer
        consumer.assignTimestampsAndWatermarks(new TaxiRideTSExtractor());

        // create a TaxiRide data stream
        DataStream rides = env.addSource(consumer);

        // find popular places
        DataStream> popularPlaces = rides
                // match ride to grid cell and event type (start or end)
                .map(new GridCellMatcher())
                // partition by cell id and event type
                .keyBy(0, 1)
                // build sliding window
                .timeWindow(Time.minutes(15), Time.minutes(5))
                // count ride events in window
                .apply(new RideCounter())
                // filter by popularity threshold
                .filter((Tuple4 count) -> (count.f3 >= popThreshold))
                // map grid cell to coordinates
                .map(new GridToCoordinates());

        popularPlaces.print();

        // execute the transformation pipeline
        env.execute("Popular Places from Kafka");
    }

    /**
     * Assigns timestamps to TaxiRide records.
     * Watermarks are a fixed time interval behind the max timestamp and are periodically emitted.
     */
    public static class TaxiRideTSExtractor extends BoundedOutOfOrdernessTimestampExtractor {

        public TaxiRideTSExtractor() {
            super(Time.seconds(MAX_EVENT_DELAY));
        }

        @Override
        public long extractTimestamp(TaxiRide ride) {
            if (ride.isStart) {
                return ride.startTime.getMillis();
            }
            else {
                return ride.endTime.getMillis();
            }
        }
    }
  • 该实例使用的是AssignerWithPeriodicWatermarks,通过env.getConfig().setAutoWatermarkInterval(1000)设置了watermark的时间间隔,通过assignTimestampsAndWatermarks指定了AssignerWithPeriodicWatermarks为TaxiRideTSExtractor,它继承了BoundedOutOfOrdernessTimestampExtractor抽象类

小结

  • flink为了方便开发提供了几个内置的Pre-defined Timestamp Extractors / Watermark Emitters,其中一个就是BoundedOutOfOrdernessTimestampExtractor
  • BoundedOutOfOrdernessTimestampExtractor抽象类实现AssignerWithPeriodicWatermarks接口的extractTimestamp及getCurrentWatermark方法,同时声明抽象方法extractAscendingTimestamp供子类实现
  • BoundedOutOfOrdernessTimestampExtractor的构造器接收maxOutOfOrderness参数用于指定element允许滞后(t-t_w,t为element的eventTime,t_w为前一次watermark的时间)的最大时间,在计算窗口数据时,如果超过该值则会被忽略

doc

  • Pre-defined Timestamp Extractors / Watermark Emitters

你可能感兴趣的:(聊聊flink的BoundedOutOfOrdernessTimestampExtractor)