浅谈BST(二叉查找树)

目录

  • BST的性质
  • BST的建立
  • BST的检索
  • BST的插入
  • BST求前驱/后继
  • BST的节点删除
  • 复杂度
  • 平衡树

BST的性质

树上每个节点上有个值,这个值叫关键码

每个节点的关键码大于其任意左侧子节点的关键码,小于其任意右节点的关键码。

显然一个BST的中序遍历就是关键码单调递增的节点序列

BST的建立

为了避免越界其实好像没卵用,减少边界情况的判定,一般在BST中额外插入一个关键码为INF和-INF的节点

const int N=1000000;
struct BST
{
    int l,r;//l,r分别是左右孩子的编号
    int val;//关键码
}a[N];
int tot,root,INF=1<<30;
int New(int val)
{
    a[++tot].val=val;
    return tot;
}
void build()
{
    New(-INF),New(INF);
    root=1,a[1].r=2;
}

BST的检索

在BST中检索是否存在关键码为val的节点

设p为根节点

1.若p的关键码等于\(val\),直接返回

2.若p的关键码大于\(val\)

​ (1)若\(p\)的左子节点为空,则不存在

​ (2)若\(p\)的左子节点不为空,则在p的左子树中递归检索

2.若p的关键码小于\(val\)

​ (1)若\(p\)的右子节点为空,则不存在

​ (2)若\(p\)的右子节点不为空,则在\(p\)的右子树中递归检索

int get(int p,int val)
{
    if(p==0) return 0;
    if(val==a[p].val) return p;
    return val

BST的插入

在BST中插入关键码为val的节点

与BST的检索的检索过程类似,这里就不在赘述

void insert(int &p,int val)
{
    if(p==0)
    {
        p=New(val);
        return ;
    }
    if(val==a[p].val) return;
    val

细心的读者应该发现了p是引用的,why?

因为这里父节点的l或r值会被更新

BST求前驱/后继

这里首先赘述一下什么是前驱和后继

后继:BST中关键码大于val的最小的

前驱:BST中关键码小于val的最大的

这里以求后继为例

初始化ans为正无穷关键码的那个节点的编号。然后在BST中检索val,检索过程中不断更新ans

检索完成后有三种可能的结果

1.没有找到\(val\),那么现在ans即为所求

2.找到了\(val\),但是关键码为val的节点p没有右子树,那ans即为所求

3.找到了\(val\),而且关键码为val的节点p有右子树,那么就要从p的右孩子一直向左找

因为教育局把sm.ms图床给封了所以图片上传不了,抱歉

int getnext(int val)
{
    int ans=2,p=root;
    while(p)
    {
        if(val==a[p].val)
        {
            if(a[p].r>0)
            {
                p=a[p].r;
                while(a[p].l>0) p=a[p].l;
                ans=p;
            }
            break;
        }
        if(a[p].val>val&&a[p].val

上面的代码是用的非递归,以后有时间可能会补上递归的

前驱同理,这里不再赘述。

BST的节点删除

从BST中删除关键码为val的节点

首先检索出关键码为val的节点p来

有以下几种情况

1.如果p的子节点个数小于\(2\),则直接删除掉\(p\),并令\(p\)的子节点替代\(p\)的位置,与\(p\)的父节点相连

2.\(p\)既有左子树又有右子树,那么就找出\(val\)的后继来,显然后继没有左子树,所以直接删除后继,然后让后继的右子树代替游记,然后让后继代替\(p\)

没法传图,抱歉*2

void remove(int &p,int val)
{
    if(p==0) return ;
    if(val==a[p].val)
    {
        if(a[p].l==0) p=a[p].r;
        else if(a[p].r==0) p=a[p].l;
        else 
        {
            int next=a[p].r;
            while(a[next].l>0) next=a[p].l;
            remove(a[p].r,a[next].val);
            a[next].l=a[p].l,a[next].r=a[p].r;
            p=next;
        }
        return ;
    }
    if(val

细心的读者可能发现了,上述代码只能处理没有重复的关键值的情况,其实处理重复的关键值也很简单,这需要记录一个\(cnt\)即可

struct BST
{
    int l,r;//l,r分别是左右孩子的编号
    int val;//关键码
    int cnt;//计数器
}a[N];

其他操作不再赘述

复杂度

显然BST一次操作复杂度为\(O(log N)\)

但是BST容易被有序数列卡成\(O(N)\)的,这时树就变成一条链了

这是就可以用平衡树解决.....以后或许会更一篇平衡树的博客(前提是我要学会

参考《算法竞赛进阶指南》,代码未经测试不保证正确性,如有错误还望指正(狗头保命

平衡树

浅谈fhq treap

你可能感兴趣的:(浅谈BST(二叉查找树))