邻接矩阵

(以下图为例子)采用邻接矩阵的方法定义图的数据结构,并实现图的深度优先周游算法。

邻接矩阵_第1张图片

1.首先先定义并实现图的边Edge类,Edge类中的成员变量有:from->起点 to->终点 weight->权值(权值初始化为0)

Edge.h

 1 class Edge
 2 {
 3 public:
 4     int from, to, weight;
 5 public:
 6     Edge() {
 7         from = -1;
 8         to = -1;
 9         weight = 0;
10     }
11 
12     Edge(int f, int t, int w){
13         from = f;
14         to = t;
15         weight = w;
16     }
17     ~Edge() {}
18 };

 

2.定义图的基类,便于邻接矩阵的继承

Graph.h

 1 #include "Edge.h"
 2 class Graph
 3 {
 4 protected:
 5     const int UNVISITED;
 6     const int VISITED;
 7 public:
 8     int numVertex;           //图中顶点的总个数
 9     int numEdge;              //边数
10     int *Mark;               //标记
11     //int *Indegree;           //存放图中顶点的入度
12 public:
13     bool IsEdge(Edge oneEdge);     //判断是否为边
14     Graph(int numVertex);
15     ~Graph();
16 };

Graph.cpp

 1 #include "Graph.h"
 2 
 3 Graph::Graph(int numVertex):UNVISITED(0),VISITED(1){
 4     this->numVertex = numVertex;
 5     this->numEdge = 0;                          //初始化顶点数为0
 6     this->Mark = new int [numVertex];           //为标记数组动态分配空间
 7     //this->Indegree = new int [numVertex];  
 8 
 9     for (int i = 0; i < numVertex; i++)
10     {
11         Mark[i] = UNVISITED;                    //将全部点初始化为未访问
12         //Indegree[i] = 0;
13     }
14 }
15 
16 Graph::~Graph(){
17     delete []Mark;
18     //delete []Indegree;
19 }
20 
21 bool Graph::IsEdge(Edge oneEdge){
22     if (oneEdge.weight > 0 && oneEdge.to >= 0)
23     {
24         return true;
25     }
26     else return false;
27 }

 

3.定义Graph类的子类,将图转换为邻接矩阵

tips:  Initialize函数形参中的*pWArray2D传进的是一个二维数组。

Graphm.h

 

 1 #include "Graph.cpp"
 2 
 3 class Graphm:public Graph
 4 {
 5 private:
 6     int **matrix;   //指向邻接矩阵的指针
 7 public:
 8     Edge FirstEdge(int oneVertex);   //返回以oneVertex为顶点的第一条Edge
 9     Edge NextEdge(Edge preEdge);     //返回与preEdge有相同顶点的下一条边
10     void setEdge(int from,int to,int weigth);  //设置边
11     void delEdge(int from,int to);   //删除边
12     void Initialize(Graphm *Graphm,int *pWArray2D );               //初始化图
13     void Visited(Graphm &M,int v); //输出访问过的点
14     void DFS(Graphm &M,int v);    //深度优先周游
15     int ToVertex(Edge oneEdge);  //返回边的终点
16     void Travel(Graphm &G,int startVertex);  //周游全图
17     Graphm(int numVertex);  
18     ~Graphm();
19 };

 

Graphm.cpp

  1 #include "Graphm.h"
  2 #include 
  3 using namespace std;
  4 
  5 //构造函数
  6 Graphm::Graphm(int numVertex):Graph(numVertex){
  7     int i,j;
  8     matrix = (int **)new int *[numVertex];       //申请matrix数组行向量数组
  9 
 10     for (i = 0; i < numVertex; i++){
 11         matrix[i] = new int[numVertex];          //申请行的存储空间(列向量)
 12     }
 13 
 14     for (i = 0; i < numVertex; i++){
 15         for (j = 0; j < numVertex; j++){
 16             matrix[i][j] = 0;
 17         }
 18     }
 19     cout << "构造函数执行!" << endl;
 20 }
 21 //析构函数释放二维数组的动态分配的空间
 22 Graphm::~Graphm(){
 23     for (int i = 0; i < numVertex; i++)
 24     {
 25         delete [] matrix[i];
 26     }
 27     delete [] matrix;
 28     cout << "释放空间成功!" << endl;
 29 }
 30 //初始化图
 31 void Graphm::Initialize(Graphm *Graphm,int *pWArray2D){
 32     cout << "开始初始化!" << endl;
 33     int N = numVertex;
 34     int array_i_j = 0;
 35     for (int i = 0; i < N; i++)
 36     {
 37         for (int j = 0; j < N; j++)
 38         {
 39             array_i_j = *(pWArray2D + i*N + j);     //获得二维数组中每一个元素的值
 40             //cout << array_i_j << endl;
 41             if (array_i_j > 0)                      //当元素的值大于0时,证明有从i指向j的边
 42             {
 43                 Graphm->setEdge(i,j,array_i_j);     //设置边
 44             }
 45         }
 46     }
 47     cout << "初始化成功!"  << endl;
 48     /*for (int i = 0; i < numVertex; i++)
 49     {
 50         for (int j = 0; j < numVertex; j++)
 51         {
 52             cout << matrix[i][j] << " "; 
 53         }
 54         cout << endl;
 55         
 56     }*/
 57 }
 58 //返回以oneVertex为顶点的第一条Edge
 59 Edge Graphm::FirstEdge(int oneVertex){          
 60     Edge myEdge;
 61     myEdge.from = oneVertex;
 62 
 63     for (int i = 0; i < numVertex; i++)
 64     {
 65         if (matrix[oneVertex][i] != 0)
 66         {
 67             myEdge.to = i;
 68             myEdge.weight = matrix[oneVertex][i];
 69             break;
 70         }
 71     }
 72     return myEdge;
 73 }
 74 //返回与preEdge有相同顶点的下一条Edge
 75 Edge Graphm::NextEdge(Edge preEdge){            
 76     Edge myEdge;
 77     myEdge.from = preEdge.from;
 78     if (preEdge.to+1 < numVertex)
 79     {
 80         for (int i = preEdge.to+1; i < numVertex; i++)
 81         {
 82             if (matrix[preEdge.from][i] != 0)
 83             {
 84                 myEdge.to = i;
 85                 myEdge.weight = matrix[preEdge.from][i];
 86                 break;
 87             }
 88         }
 89     }
 90     return myEdge;
 91 }
 92 //为图设置边
 93 void Graphm::setEdge(int from,int to,int weigth){       
 94     if (matrix[from][to] <= 0)
 95     {
 96         numEdge++;                   //边的个数加1
 97         //Indegree[to]++;
 98     }
 99     matrix[from][to] = weigth;
100 }
101 //删除边
102 void Graphm::delEdge(int from,int to){   
103     if (matrix[from][to] > 0)
104     {
105         numEdge--;                  //边的个数减1
106         //Indegree[to]--;
107     }
108     matrix[from][to] = 0;
109 }
110 //输出访问过的点
111 void Graphm::Visited(Graphm &M,int v){
112     cout << "v" << v << " ";
113 }
114 //返回边的终点
115 int Graphm::ToVertex(Edge oneEdge){
116     return oneEdge.to;
117 }
118 //深度优先周游
119 void Graphm::DFS(Graphm &M,int v){
120     M.Mark[v] = VISITED;
121     Visited(M,v);
122     for (Edge e = M.FirstEdge(v); M.IsEdge(e); e = M.NextEdge(e))
123     {
124         if (M.Mark[M.ToVertex(e)] == UNVISITED)
125         {
126             //cout << M.ToVertex(e) << endl;
127             DFS(M,M.ToVertex(e));
128         }
129     }
130 }
131 //周游完整的图
132 void Graphm::Travel(Graphm &G,int startVertex){
133     DFS(G,startVertex);            //不一定能周游每一个顶点
134     //更换顶点周游
135     for (int i = 0; i < numVertex; i++)
136     {
137         if (G.Mark[i] == UNVISITED)
138         {
139             DFS(G,i);
140         }
141     }
142 }

 

 

4.主函数的实现

tips: 先根据图画出邻接矩阵,再将邻接矩阵作为实参进行传递

Main.cpp

 1 #include "Graphm.cpp"
 2 #define N  8
 3 int main(int argc, char const *argv[])
 4 {
 5     
 6     //int N = 8;
 7     int M[N][N] = {
 8         0,0,0,1,0,0,0,0,
 9         1,0,0,0,0,0,0,0,
10         1,1,0,0,0,0,0,1,
11         0,1,0,0,0,1,0,0,
12         0,0,1,0,0,0,0,0,
13         0,0,0,0,0,0,0,0,
14         0,0,0,0,1,1,0,0,
15         0,1,0,0,1,1,1,0
16     };
17     Graphm G(N);
18     G.Initialize(&G,(int*)M);
19     cout << "全部深度周游:";
20 
21     G.Travel(G,3);
22     cout << endl;
23     
24     return 0;
25 }

注:以下总结仅代表个人观点(如有错误,欢迎指出)

总结:1.将图写为基类在此处体现出来的意义其实并不大(在此题中完全可以将Graph类与Graphm类合并起来),但是也是为了养成良好的习惯。

   2.主函数中二维数组的传递值得一记,传递的过程将其当成一位数组进行传递。

   3.周游的过程中需要考虑到当图为不连通图时,以某个顶点为起点时可能周游出来的结果不完整(以上的Travvel函数则能周游出全部的点。

   4.熟练掌握根据图画出对应的邻接矩阵。

   5.无权图的权值可设为1。

   6.动态分配的空间记得手动释放,最好的做法是写在析构函数中。

你可能感兴趣的:(邻接矩阵)