目标检测领域 2015-1

https://handong1587.github.io/deep_learning/2015/10/09/nlp.html

intro: Competition “comp4” (train on own data)

homepage:http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

Papers

Deep Neural Networks for Object Detection

paper:http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

intro: A deep version of the sliding window method, predicts bounding box directly from each location of the topmost feature map after knowing the confidences of the underlying object categories.

intro: training a convolutional network to simultaneously classify, locate and detect objects in images can boost the classification accuracy and the detection and localization accuracy of all tasks

arxiv:http://arxiv.org/abs/1312.6229

github:https://github.com/sermanet/OverFeat

code:http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation

intro: R-CNN

arxiv:http://arxiv.org/abs/1311.2524

supp:http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf

slides:http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf

slides:http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf

github:https://github.com/rbgirshick/rcnn

notes:http://zhangliliang.com/2014/07/23/paper-note-rcnn/

caffe-pr(“Make R-CNN the Caffe detection example”):https://github.com/BVLC/caffe/pull/482

MultiBox

Scalable Object Detection using Deep Neural Networks

intro: MultiBox. Train a CNN to predict Region of Interest.

arxiv:http://arxiv.org/abs/1312.2249

github:https://github.com/google/multibox

blog:https://research.googleblog.com/2014/12/high-quality-object-detection-at-scale.html

Scalable, High-Quality Object Detection

intro: MultiBox

arxiv:http://arxiv.org/abs/1412.1441

github:https://github.com/google/multibox

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

intro: ECCV 2014 / TPAMI 2015

arxiv:http://arxiv.org/abs/1406.4729

github:https://github.com/ShaoqingRen/SPP_net

notes:http://zhangliliang.com/2014/09/13/paper-note-sppnet/

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

arxiv:http://arxiv.org/abs/1407.5736

DeepID-Net

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

intro: PAMI 2016

intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations

project page:http://www.ee.cuhk.edu.hk/%CB%9Cwlouyang/projects/imagenetDeepId/index.html

arxiv:http://arxiv.org/abs/1412.5661

Object Detectors Emerge in Deep Scene CNNs

arxiv:http://arxiv.org/abs/1412.6856

paper:https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf

paper:https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf

slides:http://places.csail.mit.edu/slide_iclr2015.pdf

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

intro: CVPR 2015

project(code+data):https://www.cs.toronto.edu/~yukun/segdeepm.html

arxiv:https://arxiv.org/abs/1502.04275

github:https://github.com/YknZhu/segDeepM

NoC

Object Detection Networks on Convolutional Feature Maps

intro: TPAMI 2015

arxiv:http://arxiv.org/abs/1504.06066

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

arxiv:http://arxiv.org/abs/1504.03293

slides:http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf

github:https://github.com/YutingZhang/fgs-obj

Fast R-CNN

Fast R-CNN

arxiv:http://arxiv.org/abs/1504.08083

slides:http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

github:https://github.com/rbgirshick/fast-rcnn

webcam demo:https://github.com/rbgirshick/fast-rcnn/pull/29

notes:http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/

notes:http://blog.csdn.net/linj_m/article/details/48930179

github(“Fast R-CNN in MXNet”):https://github.com/precedenceguo/mx-rcnn

github:https://github.com/mahyarnajibi/fast-rcnn-torch

github:https://github.com/apple2373/chainer-simple-fast-rnn

github(Tensorflow):https://github.com/zplizzi/tensorflow-fast-rcnn

DeepBox

DeepBox: Learning Objectness with Convolutional Networks

arxiv:http://arxiv.org/abs/1505.02146

github:https://github.com/weichengkuo/DeepBox

MR-CNN

Object detection via a multi-region & semantic segmentation-aware CNN model

intro: ICCV 2015. MR-CNN

arxiv:http://arxiv.org/abs/1505.01749

github:https://github.com/gidariss/mrcnn-object-detection

notes:http://zhangliliang.com/2015/05/17/paper-note-ms-cnn/

notes:http://blog.cvmarcher.com/posts/2015/05/17/multi-region-semantic-segmentation-aware-cnn/

my notes: Who can tell me why there are a bunch of duplicated sentences in section 7.2 “Detection error analysis”? :-D

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

intro: NIPS 2015

arxiv:http://arxiv.org/abs/1506.01497

gitxiv:http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region

slides:http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf

github:https://github.com/ShaoqingRen/faster_rcnn

github:https://github.com/rbgirshick/py-faster-rcnn

github:https://github.com/mitmul/chainer-faster-rcnn

github(Torch):https://github.com/andreaskoepf/faster-rcnn.torch

github(Torch):https://github.com/ruotianluo/Faster-RCNN-Densecap-torch

github(Tensorflow):https://github.com/smallcorgi/Faster-RCNN_TF

github(tensorflow):https://github.com/CharlesShang/TFFRCNN

Faster R-CNN in MXNet with distributed implementation and data parallelization

github:https://github.com/dmlc/mxnet/tree/master/example/rcnn

YOLO

You Only Look Once: Unified, Real-Time Object Detection

目标检测领域 2015-1_第1张图片

intro: YOLO uses the whole topmost feature map to predict both confidences for multiple categories and bounding boxes (which are shared for these categories).

arxiv:http://arxiv.org/abs/1506.02640

code:http://pjreddie.com/darknet/yolo/

github:https://github.com/pjreddie/darknet

reddit:https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/

github:https://github.com/gliese581gg/YOLO_tensorflow

github:https://github.com/xingwangsfu/caffe-yolo

github:https://github.com/frankzhangrui/Darknet-Yolo

github:https://github.com/BriSkyHekun/py-darknet-yolo

github:https://github.com/tommy-qichang/yolo.torch

github:https://github.com/frischzenger/yolo-windows

gtihub:https://github.com/AlexeyAB/yolo-windows

Start Training YOLO with Our Own Data

目标检测领域 2015-1_第2张图片

intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.

blog:http://guanghan.info/blog/en/my-works/train-yolo/

github:https://github.com/Guanghan/darknet

R-CNN minus R

arxiv:http://arxiv.org/abs/1506.06981

AttentionNet

AttentionNet: Aggregating Weak Directions for Accurate Object Detection

intro: ICCV 2015

intro: state-of-the-art performance of 65% (AP) on PASCAL VOC 2007/2012 human detection task

arxiv:http://arxiv.org/abs/1506.07704

slides:https://www.robots.ox.ac.uk/~vgg/rg/slides/AttentionNet.pdf

slides:http://image-net.org/challenges/talks/lunit-kaist-slide.pdf

DenseBox

DenseBox: Unifying Landmark Localization with End to End Object Detection

arxiv:http://arxiv.org/abs/1509.04874

demo:http://pan.baidu.com/s/1mgoWWsS

KITTI result:http://www.cvlibs.net/datasets/kitti/eval_object.php

SSD

SSD: Single Shot MultiBox Detector

arxiv:http://arxiv.org/abs/1512.02325

paper:http://www.cs.unc.edu/~wliu/papers/ssd.pdf

github:https://github.com/weiliu89/caffe/tree/ssd

video:http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973

github(MXNet):https://github.com/zhreshold/mxnet-ssd

github:https://github.com/zhreshold/mxnet-ssd.cpp

github(Keras):https://github.com/rykov8/ssd_keras

为什么SSD(Single Shot MultiBox Detector)对小目标的检测效果不好?

zhihu:https://www.zhihu.com/question/49455386

Inside-Outside Net (ION)

Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks

intro: “0.8s per image on a Titan X GPU (excluding proposal generation) without two-stage bounding-box regression and 1.15s per image with it”.

arxiv:http://arxiv.org/abs/1512.04143

slides:http://www.seanbell.ca/tmp/ion-coco-talk-bell2015.pdf

coco-leaderboard:http://mscoco.org/dataset/#detections-leaderboard

Adaptive Object Detection Using Adjacency and Zoom Prediction

intro: CVPR 2016. AZ-Net

arxiv:http://arxiv.org/abs/1512.07711

github:https://github.com/luyongxi/az-net

youtube:https://www.youtube.com/watch?v=YmFtuNwxaNM

G-CNN

G-CNN: an Iterative Grid Based Object Detector

arxiv:http://arxiv.org/abs/1512.07729

Factors in Finetuning Deep Model for object detection Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution

intro: CVPR 2016.rank 3rd for provided data and 2nd for external data on ILSVRC 2015 object detection

project page:http://www.ee.cuhk.edu.hk/~wlouyang/projects/ImageNetFactors/CVPR16.html

arxiv:http://arxiv.org/abs/1601.05150

We don’t need no bounding-boxes: Training object class detectors using only human verification

arxiv:http://arxiv.org/abs/1602.08405

HyperNet

HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

arxiv:http://arxiv.org/abs/1604.00600

MultiPathNet

A MultiPath Network for Object Detection

目标检测领域 2015-1_第3张图片

intro: BMVC 2016. Facebook AI Research (FAIR)

arxiv:http://arxiv.org/abs/1604.02135

github:https://github.com/facebookresearch/multipathnet

CRAFT

CRAFT Objects from Images

intro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNN

project page:http://byangderek.github.io/projects/craft.html

arxiv:https://arxiv.org/abs/1604.03239

paper:http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_CRAFT_Objects_From_CVPR_2016_paper.pdf

github:https://github.com/byangderek/CRAFT

OHEM

Training Region-based Object Detectors with Online Hard Example Mining

intro: CVPR 2016 Oral. Online hard example mining (OHEM)

arxiv:http://arxiv.org/abs/1604.03540

paper:http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shrivastava_Training_Region-Based_Object_CVPR_2016_paper.pdf

Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection

intro: CVPR 2016

arxiv:http://arxiv.org/abs/1604.05766

Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers

http://www-personal.umich.edu/~wgchoi/SDP-CRC_camready.pdf

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

arxiv:http://arxiv.org/abs/1605.06409

github:https://github.com/daijifeng001/R-FCN

github:https://github.com/Orpine/py-R-FCN

Weakly supervised object detection using pseudo-strong labels

arxiv:http://arxiv.org/abs/1607.04731

Recycle deep features for better object detection

arxiv:http://arxiv.org/abs/1607.05066

MS-CNN

A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

intro: ECCV 2016

intro: 640×480: 15 fps, 960×720: 8 fps

arxiv:http://arxiv.org/abs/1607.07155

github:https://github.com/zhaoweicai/mscnn

poster:http://www.eccv2016.org/files/posters/P-2B-38.pdf

Multi-stage Object Detection with Group Recursive Learning

intro: VOC2007: 78.6%, VOC2012: 74.9%

arxiv:http://arxiv.org/abs/1608.05159

Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

intro: SubCNN

arxiv:http://arxiv.org/abs/1604.04693

github:https://github.com/yuxng/SubCNN

PVANET

PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection

intro: “less channels with more layers”, concatenated ReLU, Inception, and HyperNet, batch normalization, residual connections

arxiv:http://arxiv.org/abs/1608.08021

github:https://github.com/sanghoon/pva-faster-rcnn

leaderboard(PVANet 9.0):http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4

PVANet: Lightweight Deep Neural Networks for Real-time Object Detection

intro: Presented at NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN). Continuation ofarXiv:1608.08021

arxiv:https://arxiv.org/abs/1611.08588

GBD-Net

Gated Bi-directional CNN for Object Detection

intro: The Chinese University of Hong Kong & Sensetime Group Limited

paper:http://link.springer.com/chapter/10.1007/978-3-319-46478-7_22

mirror:https://pan.baidu.com/s/1dFohO7v

Crafting GBD-Net for Object Detection

intro: winner of the ImageNet object detection challenge of 2016. CUImage and CUVideo

intro: gated bi-directional CNN (GBD-Net)

arxiv:https://arxiv.org/abs/1610.02579

github:https://github.com/craftGBD/craftGBD

StuffNet

StuffNet: Using ‘Stuff’ to Improve Object Detection

arxiv:https://arxiv.org/abs/1610.05861

Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene

arxiv:https://arxiv.org/abs/1610.09609

Hierarchical Object Detection with Deep Reinforcement Learning

intro: Deep Reinforcement Learning Workshop (NIPS 2016)

project page:https://imatge-upc.github.io/detection-2016-nipsws/

arxiv:https://arxiv.org/abs/1611.03718

github:https://github.com/imatge-upc/detection-2016-nipsws

Learning to detect and localize many objects from few examples

arxiv:https://arxiv.org/abs/1611.05664

Speed/accuracy trade-offs for modern convolutional object detectors

intro: Google Research

arxiv:https://arxiv.org/abs/1611.10012

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving

arxiv:https://arxiv.org/abs/1612.01051

Feature Pyramid Network (FPN)

Feature Pyramid Networks for Object Detection

intro: Facebook AI Research

arxiv:https://arxiv.org/abs/1612.03144

Detection From Video

Learning Object Class Detectors from Weakly Annotated Video

intro: CVPR 2012

paper:https://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_00905.pdf

Analysing domain shift factors between videos and images for object detection

arxiv:https://arxiv.org/abs/1501.01186

Video Object Recognition

slides:http://vision.princeton.edu/courses/COS598/2015sp/slides/VideoRecog/Video%20Object%20Recognition.pptx

Deep Learning for Saliency Prediction in Natural Video

intro: Submitted on 12 Jan 2016

keywords: Deep learning, saliency map, optical flow, convolution network, contrast features

paper:https://hal.archives-ouvertes.fr/hal-01251614/document

T-CNN

T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

intro: Winning solution in ILSVRC2015 Object Detection from Video(VID) Task

arxiv:http://arxiv.org/abs/1604.02532

github:https://github.com/myfavouritekk/T-CNN

Object Detection from Video Tubelets with Convolutional Neural Networks

intro: CVPR 2016 Spotlight paper

arxiv:https://arxiv.org/abs/1604.04053

paper:http://www.ee.cuhk.edu.hk/~wlouyang/Papers/KangVideoDet_CVPR16.pdf

gihtub:https://github.com/myfavouritekk/vdetlib

Object Detection in Videos with Tubelets and Multi-context Cues

intro: SenseTime Group

slides:http://www.ee.cuhk.edu.hk/~xgwang/CUvideo.pdf

slides:http://image-net.org/challenges/talks/Object%20Detection%20in%20Videos%20with%20Tubelets%20and%20Multi-context%20Cues%20-%20Final.pdf

Context Matters: Refining Object Detection in Video with Recurrent Neural Networks

intro: BMVC 2016

keywords: pseudo-labeler

arxiv:http://arxiv.org/abs/1607.04648

paper:http://vision.cornell.edu/se3/wp-content/uploads/2016/07/video_object_detection_BMVC.pdf

CNN Based Object Detection in Large Video Images

intro: WangTao @ 爱奇艺

keywords: object retrieval, object detection, scene classification

slides:http://on-demand.gputechconf.com/gtc/2016/presentation/s6362-wang-tao-cnn-based-object-detection-large-video-images.pdf

Datasets

YouTube-Objects dataset v2.2

homepage:http://calvin.inf.ed.ac.uk/datasets/youtube-objects-dataset/

ILSVRC2015: Object detection from video (VID)

homepage:http://vision.cs.unc.edu/ilsvrc2015/download-videos-3j16.php#vid

Object Detection in 3D

Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks

arxiv:https://arxiv.org/abs/1609.06666

Salient Object Detection

This task involves predicting the salient regions of an image given by human eye fixations.

Best Deep Saliency Detection Models (CVPR 2016 & 2015)

http://i.cs.hku.hk/~yzyu/vision.html

Large-scale optimization of hierarchical features for saliency prediction in natural images

paper:http://coxlab.org/pdfs/cvpr2014_vig_saliency.pdf

Predicting Eye Fixations using Convolutional Neural Networks

paper:http://www.escience.cn/system/file?fileId=72648

Saliency Detection by Multi-Context Deep Learning

paper:http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhao_Saliency_Detection_by_2015_CVPR_paper.pdf

DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

arxiv:http://arxiv.org/abs/1510.05484

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

目标检测领域 2015-1_第4张图片

paper:www.shengfenghe.com/supercnn-a-superpixelwise-convolutional-neural-network-for-salient-object-detection.html

你可能感兴趣的:(目标检测领域 2015-1)