大数据学习day20-----spark03-----RDD编程实战案例(1 计算订单分类成交金额,2 将订单信息关联分类信息,并将这些数据存入Hbase中,3 使用Spark读取日志文件,根据Ip地址,查询地址对应的位置信息

1 RDD编程实战案例一

数据样例

大数据学习day20-----spark03-----RDD编程实战案例(1 计算订单分类成交金额,2 将订单信息关联分类信息,并将这些数据存入Hbase中,3 使用Spark读取日志文件,根据Ip地址,查询地址对应的位置信息_第1张图片

 

 

 字段说明:

大数据学习day20-----spark03-----RDD编程实战案例(1 计算订单分类成交金额,2 将订单信息关联分类信息,并将这些数据存入Hbase中,3 使用Spark读取日志文件,根据Ip地址,查询地址对应的位置信息_第2张图片

 

 

 其中cid中1代表手机,2代表家具,3代表服装

 

1.1 计算订单分类成交金额

需求:在给定的订单数据,根据订单的分类ID进行聚合,然后管理订单分类名称,统计出某一天商品各个分类的成交金额,并保存至Mysql中

(1)法一,将json数据解析出来,直接使用

object IncomeKpi {
  private val logger: Logger = LoggerFactory.getLogger(IncomeKpi.getClass)
  def main(args: Array[String]): Unit = {
    val isLocal = args(0).toBoolean
    // 创建SparkContext
    val conf: SparkConf = new SparkConf().setAppName(this.getClass.getName)
    if(isLocal){
      conf.setMaster("local[*]")
    }
    val sc: SparkContext = new SparkContext(conf)
    // 使用SparkContext创建RDD
    val lines: RDD[String] = sc.textFile(args(1))
    val tpRDD: RDD[(Int, Double)] = lines.map(line => {
      var tp = (-1, 0.0)
      var jsonObj: JSONObject = null
      // 使用FastJSON解析数据
      try {
        jsonObj= JSON.parseObject(line)
        val cid: Int = jsonObj.getInteger("cid").toInt
        val money: Double = jsonObj.getDouble("money").toDouble
        tp = (cid, money)
      } catch {
        case  e:JSONException => {
          // 处理有问题的数据
          logger.error("parse json error: => " + line)
        }
      }
      tp
    })
    val reduced: Array[(Int, Double)] = tpRDD.reduceByKey(_+_).collect()
    println(reduced.toBuffer)
  }
}

运行结果:

大数据学习day20-----spark03-----RDD编程实战案例(1 计算订单分类成交金额,2 将订单信息关联分类信息,并将这些数据存入Hbase中,3 使用Spark读取日志文件,根据Ip地址,查询地址对应的位置信息_第3张图片

 

 

 发现有个不要的数据没被过滤掉,此处自己还不知道不要的数据怎么处理掉

 

(2)法二,定义一个bean去保存解析json数据得到的字段,需要时再取出来(此处的bean用case class,这样方便点,不需要序列化)

 这里有两种做法,使用foreach将数据一条一条拿出来(每拿一条数据会与数据库建立一个连接),效率比较低,所以使用foreachPartition,foreach直接取出rdd的kv对,而foreachPartition为迭代器

Foreach与foreachPartition的区别

Foreach与foreachPartition都是在每一个partition中对iterator进行操作,

不同的是,foreach是直接在每一个partition中直接对iterator运行foreach操作,而传入的function仅仅是在foreach内部使用,

而foreachPartition是在每一个partition中把iterator给传入的function,让function自己对iterator进行处理.

 

 foreach

object IncomeKpi2 {
  private val logger: Logger = LoggerFactory.getLogger(IncomeKpi2.getClass)
  def main(args: Array[String]): Unit = {
    val isLocal: Boolean = args(0).toBoolean
    // 创建SparkContext
    val conf: SparkConf = new SparkConf().setAppName(this.getClass.getName)
    if(isLocal){
      conf.setMaster("local[*]")
    }
    val sc: SparkContext = new SparkContext(conf)
    // 使用sc创建rdd
    val lines: RDD[String] = sc.textFile(args(1))
    // 使用fastJson解析json数据,将数据封装到bean中
    val beanRDD: RDD[IncomeBean] = lines.map(line => {
      var bean:IncomeBean = null
      try {
        bean = JSON.parseObject(line, classOf[IncomeBean])
      } catch {
        case e: JSONException => {
          logger.error("parse json error")
        }
      }
      bean
    })
    // 过滤掉不需要的数据
    val filtered: RDD[IncomeBean] = beanRDD.filter(_ != null)
    // 将数据转成元组形式
    val cidAndMoneyRDD: RDD[(Int, Double)] = filtered.map(bean => {
      val cid: Int = bean.cid.toInt
      val money: Double = bean.money
      (cid, money)
    })
    // 分组聚合
    val reduced: RDD[(Int, Double)] = cidAndMoneyRDD.reduceByKey(_+_)
    // 再次创建一个RDD,用来读取分类文件
    val cLines: RDD[String] = sc.textFile(args(2))
    val cidAndCName: RDD[(Int, String)] = cLines.map(line => {
      val split: Array[String] = line.split(",")
      val cid: Int = split(0).toInt
      val cname: String = split(1)
      (cid, cname)
    })
    // 将两个rdd使用join关联起来
    val joined: RDD[(Int, (Double, String))] = reduced.join(cidAndCName)
    // 对join后的数据进行处理
    val res: RDD[(String, Double)] = joined.map(t => (t._2._2, t._2._1))

    res.foreach(dataToMySQL)
  }

  // 创建用于连接数据库并将res结果存入数据库的函数
  val dataToMySQL: ((String, Double)) => Unit = (t:(String, Double)) => {
    var ps: PreparedStatement = null
    var conn: Connection = null
    // 创建一个Connection
    try {
      conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/db_user?characterEncoding=UTF-8",
        "root",
        "feng")
      // 对sql语句进行预编译,并插入相应的数据
      ps = conn.prepareStatement("insert into t_result values (null,?,?,?)")
      ps.setString(1, t._1)
      ps.setDouble(2, t._2)
      ps.setDate(3, new Date(System.currentTimeMillis()))
      // 执行
      ps.executeUpdate()
    } catch{
      case e:SQLException => {
        // 有误的数据
      }
    } finally{
      // 释放MySQL的资源
      if (ps != null){
        ps.close()
      }
      if (conn != null) {
        conn.close()
      }
    }
    ()
  }
}
View Code

foreachPartition(与foreach的区别就是从rdd中获取数据有点不一样)

object IncomeKpi3 {
  private val logger: Logger = LoggerFactory.getLogger(IncomeKpi2.getClass)
  def main(args: Array[String]): Unit = {
    val isLocal: Boolean = args(0).toBoolean
    // 创建SparkContext
    val conf: SparkConf = new SparkConf().setAppName(this.getClass.getName)
    if(isLocal){
      conf.setMaster("local[*]")
    }
    val sc: SparkContext = new SparkContext(conf)
    // 使用sc创建rdd
    val lines: RDD[String] = sc.textFile(args(1))
    // 使用fastJson解析json数据,将数据封装到bean中
    val beanRDD: RDD[IncomeBean] = lines.map(line => {
      var bean:IncomeBean = null
      try {
        bean = JSON.parseObject(line, classOf[IncomeBean])
      } catch {
        case e: JSONException => {
          logger.error("parse json error")
        }
      }
      bean
    })
    // 过滤掉不需要的数据
    val filtered: RDD[IncomeBean] = beanRDD.filter(_ != null)
    // 将数据转成元组形式
    val cidAndMoneyRDD: RDD[(Int, Double)] = filtered.map(bean => {
      val cid: Int = bean.cid.toInt
      val money: Double = bean.money
      (cid, money)
    })
    // 分组聚合
    val reduced: RDD[(Int, Double)] = cidAndMoneyRDD.reduceByKey(_+_)
    // 再次创建一个RDD,用来读取分类文件
    val cLines: RDD[String] = sc.textFile(args(2))
    val cidAndCName: RDD[(Int, String)] = cLines.map(line => {
      val split: Array[String] = line.split(",")
      val cid: Int = split(0).toInt
      val cname: String = split(1)
      (cid, cname)
    })
    // 将两个rdd使用join关联起来
    val joined: RDD[(Int, (Double, String))] = reduced.join(cidAndCName)
    // 对join后的数据进行处理
    val res: RDD[(String, Double)] = joined.map(t => (t._2._2, t._2._1))

    res.foreachPartition(dataToMySQL)
  }

  // 创建用于连接数据库并将res结果存入数据库的函数
  val dataToMySQL = (it:Iterator[(String, Double)]) => {
    var ps: PreparedStatement = null
    var conn: Connection = null
    // 创建一个Connection
    try {
      it.foreach( t =>{
        conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/db_user?characterEncoding=UTF-8",
          "root",
          "feng")
        // 对sql语句进行预编译,并插入相应的数据
        ps = conn.prepareStatement("insert into t_result values (null,?,?,?)")
        ps.setString(1, t._1)
        ps.setDouble(2, t._2)
        ps.setDate(3, new Date(System.currentTimeMillis()))
        // 执行
        ps.executeUpdate()
      })
    } catch{
      case e:SQLException => {
        // 有误的数据
      }
    } finally{
      // 释放MySQL的资源
      if (ps != null){
        ps.close()
      }
      if (conn != null) {
        conn.close()
      }
    }
    ()
  }
}
View Code

 

1.2  将订单数据关联分类信息,然后将一些数据存放到Hbase中

 OrderDetailToHbase

package com._51doit.spark03

import java.sql.{Connection, DriverManager, PreparedStatement, ResultSet}
import java.util

import com._51doit.spark02.bean.IncomeBean
import com._51doit.utils.HBaseUtil
import com.alibaba.fastjson.{JSON, JSONException}
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.{TableName, client}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object OrderDetailToHbase {
  def main(args: Array[String]): Unit = {
    System.setProperty("HADOOP_USER_NAME", "root")
    val isLocal = args(0).toBoolean
    //创建SparkConf,然后创建SparkContext
    val conf = new SparkConf().setAppName(this.getClass.getSimpleName)
    if (isLocal) {
      conf.setMaster("local[*]")
    }
    val sc = new SparkContext(conf)
    //创建RDD
    val lines: RDD[String] = sc.textFile(args(1))
    val beanRDD: RDD[IncomeBean] = lines.map(line => {
      var bean: IncomeBean = null
      try {
        bean = JSON.parseObject(line, classOf[IncomeBean])
      } catch {
        case e: JSONException => {
          //单独处理
        }
      }
      bean
    })
    //过滤有问题的数据
    val filtered: RDD[IncomeBean] = beanRDD.filter(_ != null)
    // 使用分区创建一个数据库连接,再使用这个连接查询信息
    val result: RDD[IncomeBean] = filtered.mapPartitions((it: Iterator[IncomeBean]) => {
      if(it.nonEmpty) {
        val conn: Connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/db_user?characterEncoding=UTF-8", "root", "feng")
        val ps: PreparedStatement = conn.prepareStatement("SELECT cname FROM t_category WHERE cid = ?")
        // 根据bean中的cid查找对应的分类名
        it.map(bean => {
          ps.setInt(1, bean.cid)
          val resultSet: ResultSet = ps.executeQuery()
          //获取rs中的结果
          var name: String = null
          while (resultSet.next()) {
            name = resultSet.getString("cname")
          }
          bean.categoryName = name
          //进行判断,如果迭代器中已经没有数据了,关闭连接
          if (resultSet != null) {
            resultSet.close()
          }
          if (!it.hasNext) {
            if (ps != null) {
              ps.close()
            }
            if (conn != null) {
              conn.close()
            }
          }
          bean
        })
      } else{ // 直接返回空迭代器
        it
      }
    })
    //将数据保存到Hbase中
    result.foreachPartition(it => {
      // 创建一个Hbase的连接
      val connection: client.Connection = HBaseUtil.getConnection("feng01,feng02,feng03", 2181)
      val table = connection.getTable(TableName.valueOf("t_order"))
      val puts = new util.ArrayList[Put]()
      //遍历迭代器中的数据
      it.foreach(bean => {
        //设置数据,包括rk
        val put = new Put(Bytes.toBytes(bean.oid))
        //设置列族的数据
        put.addColumn(Bytes.toBytes("order_info"), Bytes.toBytes("category_name"), Bytes.toBytes(bean.categoryName))
        put.addColumn(Bytes.toBytes("order_info"), Bytes.toBytes("money"), Bytes.toBytes(bean.money))
        //将put放入到puts这个list中
        puts.add(put)
        if(puts.size() == 100) {
          //将数据写入到Hbase中
          table.put(puts)
          //清空puts集合中的数据
          puts.clear()
        }
      })
      //将没有达到100的数据也写入到Hbase中
      table.put(puts)
      //关闭Hbase连接
      connection.close()
    })
    sc.stop()
  }

}
View Code

HBaseUtil:用来创建HBase的连接

package com._51doit.utils

import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.{Connection, ConnectionFactory}

  /**
   * Hbase的工具类,用来创建Hbase的Connection
   */
object HBaseUtil extends Serializable {
    /**
     * @param zkQuorum zookeeper地址,多个要用逗号分隔
     * @param port zookeeper端口号
     * @return
     */
    def getConnection(zkQuorum: String, port: Int): Connection = synchronized {
      val conf = HBaseConfiguration.create()
      conf.set("hbase.zookeeper.quorum", zkQuorum)
      conf.set("hbase.zookeeper.property.clientPort", port.toString)
      ConnectionFactory.createConnection(conf)
  }
}
View Code

pom.xml

xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>

    <groupId>com._51doitgroupId>
    <artifactId>spark01artifactId>
    <version>1.0-SNAPSHOTversion>
    
    <properties>
        <maven.compiler.source>1.8maven.compiler.source>
        <maven.compiler.target>1.8maven.compiler.target>
        <scala.version>2.11.12scala.version>
        <spark.version>2.3.3spark.version>
        <hadoop.version>2.8.5hadoop.version>
        <encoding>UTF-8encoding>
    properties>

    <dependencies>
        
        <dependency>
            <groupId>org.scala-langgroupId>
            <artifactId>scala-libraryartifactId>
            <version>${scala.version}version>
        dependency>
        
        <dependency>
            <groupId>com.alibabagroupId>
            <artifactId>fastjsonartifactId>
            <version>1.2.57version>
        dependency>
        
        <dependency>
            <groupId>mysqlgroupId>
            <artifactId>mysql-connector-javaartifactId>
            <version>5.1.47version>
        dependency>
        
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-core_2.11artifactId>
            <version>${spark.version}version>
            <exclusions>
                <exclusion>
                    <groupId>org.apache.hadoopgroupId>
                    <artifactId>hadoop-clientartifactId>
                exclusion>
            exclusions>
        dependency>

        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-clientartifactId>
            <version>2.8.5version>
        dependency>

        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-commonartifactId>
            <version>2.8.5version>
        dependency>


        
        <dependency>
            <groupId>org.apache.hbasegroupId>
            <artifactId>hbase-clientartifactId>
            <version>2.0.4version>
        dependency>
    dependencies>

    <build>
        <pluginManagement>
            <plugins>
                
                <plugin>
                    <groupId>net.alchim31.mavengroupId>
                    <artifactId>scala-maven-pluginartifactId>
                    <version>3.2.2version>
                plugin>
                
                <plugin>
                    <groupId>org.apache.maven.pluginsgroupId>
                    <artifactId>maven-compiler-pluginartifactId>
                    <version>3.5.1version>
                plugin>
            plugins>
        pluginManagement>
        <plugins>
            <plugin>
                <groupId>net.alchim31.mavengroupId>
                <artifactId>scala-maven-pluginartifactId>
                <executions>
                    <execution>
                        <id>scala-compile-firstid>
                        <phase>process-resourcesphase>
                        <goals>
                            <goal>add-sourcegoal>
                            <goal>compilegoal>
                        goals>
                    execution>
                    <execution>
                        <id>scala-test-compileid>
                        <phase>process-test-resourcesphase>
                        <goals>
                            <goal>testCompilegoal>
                        goals>
                    execution>
                executions>
            plugin>

            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-compiler-pluginartifactId>
                <executions>
                    <execution>
                        <phase>compilephase>
                        <goals>
                            <goal>compilegoal>
                        goals>
                    execution>
                executions>
            plugin>

            
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-shade-pluginartifactId>
                <version>2.4.3version>
                <executions>
                    <execution>
                        <phase>packagephase>
                        <goals>
                            <goal>shadegoal>
                        goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SFexclude>
                                        <exclude>META-INF/*.DSAexclude>
                                        <exclude>META-INF/*.RSAexclude>
                                    excludes>
                                filter>
                            filters>
                        configuration>
                    execution>
                executions>
            plugin>
        plugins>
    build>

project>
View Code

 

此处自己出现的问题:

  • 依赖的冲突

  使用maven管理库的依赖,有个好处就是连同库的依赖的全部jar文件一起下载,免去手工添加的麻烦,但同时也带来了同一个jar包会被下载不同版本的问题。解决方法就是在pom的配置文件中用来排除一些不需要同时下载的依赖jar包

        
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-core_2.11artifactId>
            <version>${spark.version}version>
            <exclusions>
                <exclusion>
                    <groupId>org.apache.hadoopgroupId>
                    <artifactId>hadoop-clientartifactId>
                exclusion>
            exclusions>
        dependency>
  • Hbase开启出现问题

开启Hbase的前提是一定要先开启zookeeper和hdfs文件系统(zookeeper先于hdfs启动)

 

运行结果:

大数据学习day20-----spark03-----RDD编程实战案例(1 计算订单分类成交金额,2 将订单信息关联分类信息,并将这些数据存入Hbase中,3 使用Spark读取日志文件,根据Ip地址,查询地址对应的位置信息_第4张图片

 

 

1.3 使用Spark读取日志文件,根据IP地址,查询日志文件中的IP地址对应的位置信息 ,并统计处各个省份的用户量 

 日志文件

大数据学习day20-----spark03-----RDD编程实战案例(1 计算订单分类成交金额,2 将订单信息关联分类信息,并将这些数据存入Hbase中,3 使用Spark读取日志文件,根据Ip地址,查询地址对应的位置信息_第5张图片

 

 ip文件(ip规则数据)

大数据学习day20-----spark03-----RDD编程实战案例(1 计算订单分类成交金额,2 将订单信息关联分类信息,并将这些数据存入Hbase中,3 使用Spark读取日志文件,根据Ip地址,查询地址对应的位置信息_第6张图片

 

 说明:此处加载ip规则数据若以rdd的形式的话(sc.textFile(文件路径)),由于ip规则数据会被切片成多块,这样每个task就会加载ip规则数据中的一部分,这样的话,当进行ip关联的时候(日志文件中的ip找对应的省份等信息),就可能关联不到需要的信息,ip规则数据越大,日志文件中的ip关联不到对应的信息的可能性越大(ip规则数据越大,切片的数量就会越大,相应的分区也就越多,意味着task的数量也会越多,每个task中读取到的数据占总数据的比例就会减少)。所以说,使用rdd的形式读取ip规则数据不可行,那么该怎么办呢?

  直接的想法是直接通过IO流读取ip规则数据,并保存至内存中,可以改进的一点是使用静态代码块,这样一个executor中的多个task使用这些ip规则数据时只需要加载一次ip规则数据(其他task能直接获取到数据地址的引用)。

 

IpRulesLoader(此处使用静态代码块,加载IP数据(从hdfs中读取),在Ececutor的类加载时执行一次),经过此代码处理后得到数组    ArrayBuffer[(Long, Long, String, String)],参数依次对应起始IP, 结束IP  省份名   城市名

package com._51doit.spark03


import java.io.{BufferedReader, InputStreamReader}
import java.net.URI

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FSDataInputStream, FileSystem, Path}

import scala.collection.mutable.ArrayBuffer

object IpRulesLoader {
  // 定义一个数组用来存放处理好的数据
  private val ipRules: ArrayBuffer[(Long, Long, String, String)] = new ArrayBuffer[(Long,Long,String,String)]()
  //加载IP规则数据,在Executor的类加载是执行一次
  //静态代码块
  {
    //读取HDFS中的数据
    val fileSystem: FileSystem = FileSystem.get(URI.create("hdfs://feng05:9000"), new Configuration())
    val inputStream: FSDataInputStream = fileSystem.open(new Path("/ip/ip.txt"))
    val br: BufferedReader = new BufferedReader(new InputStreamReader(inputStream))
    var line:String = null
    do {
      line = br.readLine()
      if(line != null) {
        //处理IP规则数据
        val fields = line.split("[|]")
        val startNum = fields(2).toLong
        val endNum = fields(3).toLong
        val province = fields(6)
        val city = fields(7)
        val t = (startNum, endNum, province, city)
        ipRules += t
      }
    } while(line != null)
  }
  def getAllRules: ArrayBuffer[(Long, Long, String, String)] ={
    ipRules
  }
}
View Code

注意,此处不能使用while来读取数据,要是用do  while

 

IpLocation:

package com._51doit.spark03

import com._51doit.utils.IpUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.mutable.ArrayBuffer

object IpLocation {
  def main(args: Array[String]): Unit = {
    // 决定是否本地运行
    val isLocal = args(0).toBoolean
    val conf: SparkConf = new SparkConf().setAppName(this.getClass.getSimpleName)
    if(isLocal){
      conf.setMaster("local[*]")
    }
    // 创建sc,读取日志信息,得到相应的rdd
    val sc: SparkContext = new SparkContext(conf)
    val lines: RDD[String] = sc.textFile(args(1))
    // 处理日志信息
    val provinceAndOne: RDD[(String, Int)] = lines.map(line => {
      val split: Array[String] = line.split("\\|")
      // 获取ip地址,并将ip地址转换成Long的形式
      val ipStr: String = split(1)
      val ipLong: Long = IpUtils.ip2Long(ipStr)
      // 获取Ip规则
      val allRules: ArrayBuffer[(Long, Long, String, String)] = IpRulesLoader.getAllRules
      val index: Int = IpUtils.binarySearch(allRules, ipLong)
      var province: String = "未知"
      if (index != -1) {
        province = allRules(index)._3

      }
      (province, 1)
    })
    // 按照省份进行聚合
    val result: RDD[(String, Int)] = provinceAndOne.reduceByKey(_+_)
    //将计算好的数据保存到MySQL
    println(result.collect().toBuffer)
    sc.stop()

  }
}
View Code

IpUtils(将ip转成十进制,二进制查找相应地址信息,从而获取对应的省份信息)

package com._51doit.utils

import scala.collection.mutable.ArrayBuffer

object IpUtils {

  /**
   * 将IP地址转成十进制
   *
   * @param ip
   * @return
   */
  def ip2Long(ip: String): Long = {
    val fragments = ip.split("[.]")
    var ipNum = 0L
    for (i <- 0 until fragments.length) {
      ipNum = fragments(i).toLong | ipNum << 8L
    }
    ipNum
  }

  /**
   * 二分法查找
   *
   * @param lines
   * @param ip
   * @return
   */
  def binarySearch(lines: ArrayBuffer[(Long, Long, String, String)], ip: Long): Int = {
    var low = 0 //起始
    var high = lines.length - 1 //结束
    while (low <= high) {
      val middle = (low + high) / 2
      if ((ip >= lines(middle)._1) && (ip <= lines(middle)._2))
        return middle
      if (ip < lines(middle)._1)
        high = middle - 1
      else {
        low = middle + 1
      }
    }
    -1 //没有找到
  }
}
View Code

运行结果:

大数据学习day20-----spark03-----RDD编程实战案例(1 计算订单分类成交金额,2 将订单信息关联分类信息,并将这些数据存入Hbase中,3 使用Spark读取日志文件,根据Ip地址,查询地址对应的位置信息_第7张图片

 

 

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(大数据学习day20-----spark03-----RDD编程实战案例(1 计算订单分类成交金额,2 将订单信息关联分类信息,并将这些数据存入Hbase中,3 使用Spark读取日志文件,根据Ip地址,查询地址对应的位置信息)