from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, TfidfTransformer
corpus = [
'This is the first document.',
'This is the second second document.',
'And the third one.',
'Is this the first document?',
]
CountVectorizer是通过fit_transform函数将文本中的词语转换为词频矩阵
- get_feature_names()可看到所有文本的关键字
- vocabulary_可看到所有文本的关键字和其位置
- toarray()可看到词频矩阵的结果
vectorizer = CountVectorizer()
count = vectorizer.fit_transform(corpus)
print(vectorizer.get_feature_names())
print(vectorizer.vocabulary_)
print(count.toarray())
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
{'this': 8, 'is': 3, 'the': 6, 'first': 2, 'document': 1, 'second': 5, 'and': 0, 'third': 7, 'one': 4}
[[0 1 1 1 0 0 1 0 1]
[0 1 0 1 0 2 1 0 1]
[1 0 0 0 1 0 1 1 0]
[0 1 1 1 0 0 1 0 1]]
TfidfTransformer是统计CountVectorizer中每个词语的tf-idf权值
transformer = TfidfTransformer()
tfidf_matrix = transformer.fit_transform(count)
print(tfidf_matrix.toarray())
[[ 0. 0.43877674 0.54197657 0.43877674 0. 0.
0.35872874 0. 0.43877674]
[ 0. 0.27230147 0. 0.27230147 0. 0.85322574
0.22262429 0. 0.27230147]
[ 0.55280532 0. 0. 0. 0.55280532 0.
0.28847675 0.55280532 0. ]
[ 0. 0.43877674 0.54197657 0.43877674 0. 0.
0.35872874 0. 0.43877674]]
TfidfVectorizer可以把CountVectorizer, TfidfTransformer合并起来,直接生成tfidf值
TfidfVectorizer的关键参数:
- max_df:这个给定特征可以应用在 tf-idf 矩阵中,用以描述单词在文档中的最高出现率。假设一个词(term)在 80% 的文档中都出现过了,那它也许(在剧情简介的语境里)只携带非常少信息。
- min_df:可以是一个整数(例如5)。意味着单词必须在 5 个以上的文档中出现才会被纳入考虑。设置为 0.2;即单词至少在 20% 的文档中出现 。
- ngram_range:这个参数将用来观察一元模型(unigrams),二元模型( bigrams) 和三元模型(trigrams)。参考n元模型(n-grams)。
tfidf_vec = TfidfVectorizer()
tfidf_matrix = tfidf_vec.fit_transform(corpus)
print(tfidf_vec.get_feature_names())
print(tfidf_vec.vocabulary_)
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
{'this': 8, 'is': 3, 'the': 6, 'first': 2, 'document': 1, 'second': 5, 'and': 0, 'third': 7, 'one': 4}
print(tfidf_matrix.toarray())
[[ 0. 0.43877674 0.54197657 0.43877674 0. 0.
0.35872874 0. 0.43877674]
[ 0. 0.27230147 0. 0.27230147 0. 0.85322574
0.22262429 0. 0.27230147]
[ 0.55280532 0. 0. 0. 0.55280532 0.
0.28847675 0.55280532 0. ]
[ 0. 0.43877674 0.54197657 0.43877674 0. 0.
0.35872874 0. 0.43877674]]
使用gensim的corpora和models也可以实现类似的功能,
参考:
- http://blog.csdn.net/u014595019/article/details/52218249
- http://blog.csdn.net/sinat_26917383/article/details/71436563