【题解】切割多边形 [SCOI2003] [P4529] [Bzoj1091]

【题解】切割多边形 [SCOI2003] [P4529] [Bzoj1091]

传送门:切割多边形 \(\text{[SCOI2003] [P4529]}\) \(\text{[Bzoj1091]}\)

【题目描述】

给出一个 \(Mx*My\) \((0 < Mx,My < 500)\) 的矩形,现要用 \(n\) \((3 \leqslant n \leqslant 8)\) 条直线依次对其进行切割,将它变成凸 \(n\) 边形,每次切割的长度为该直线在剩下的矩形内部的部分的长度,求最短的切割线总长度。

【分析】

一道计算几何膜您题。

由于 \(n\) 比较小,可以 \(O(n!)\) 枚举切割线的顺序,最后计算总长度取最小值就行了。

但有个非常麻烦的问题:如何求每次加入直线的切割线长度?

考虑用一个栈储存当前已经加入的直线(上下左右四个边界会在最初时加入),如果现在要加入直线 \(p_1-p_2\)(这里为方便描述,设 \(p_1\) 在左边,\(p_2\) 在右边),先求出它与栈中所有直线的交点,然后在这些交点中分别找到:\(p_1\) 左边距离 \(p_1\) 最近的点 \(ans_1\)\(p_2\) 右边距离 \(p_2\) 最近的点\(ans_2\),易知 \(len(ans_1,ans_2)\) 即为当次切割线长度。

图就不画了,自己领会吧。。。

【Code】

#include
#include
#include
#define LD double
#define LL long long
#define Re register int
#define Vector Point
using namespace std;
const int N=20;
const LD eps=1e-9,inf=1e9;
inline int dcmp(LD a){return a<-eps?-1:(a>eps?1:0);}//处理精度
inline LD Abs(LD a){return a*dcmp(a);}//取绝对值
struct Point{
    LD x,y;Point(LD X=0,LD Y=0){x=X,y=Y;}
    inline void in(){scanf("%lf%lf",&x,&y);}
    inline void out(){printf("%.2lf %.2lf\n",x,y);}
}p1,p2,p3,p4,P[N];
struct Line{
    Point a,b;int id;LD k;Line(Point X=Point(0,0),Point Y=Point(0,0),int ID=0,LD K=0){a=X,b=Y,id=ID,k=K;}
    inline void sakura(){k=(!dcmp(a.x-b.x))?0.0:(a.y-b.y)/(a.x-b.x);}
    inline bool operator<(Line O)const{return kn){Ans=min(Ans,ans);return;}
    for(Re i=1;i<=n;++i)
        if(!vis[i]){
            Point p1=L[i].a,p2=L[i].b,ans1=Point(inf,inf),ans2=Point(inf,inf);
            //ans1:在p2-p1延长线上距离p1最近的点
            //ans2:在p1-p2延长线上距离p2最近的点
            for(Re j=1;j<=t;++j){
                Point b=cross_LL(p1,p2,Q[j].a,Q[j].b);//获取直线L[i]与Q[i]的交点b
                if(dcmp(Len(p1-b)-Len(p2-b))<0&&dcmp(Len(p1-ans1)-Len(p1-b))>0)ans1=b;//如果 len(b,p1)0)ans2=b;//如果 len(b,p2)

你可能感兴趣的:(【题解】切割多边形 [SCOI2003] [P4529] [Bzoj1091])