ElasticSearch(五):Aggregation

一 Metric

单值分析,只输出一个分析结果,包括min/max/avg/sum/cardinality;

  • min/max/avg/sum
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "min_age": {
      "min": {
        "field": "age" ##age最小值
      }
    },
    "max_age": {
      "max": {
        "field": "age" ##age最大值
      }
    },
    "avg_age": {
      "avg": {
        "field": "age" ##age平均值
      }
    },
    "sum_age": {
      "sum": {
        "field": "age" ##age之和
      }
    }
  }
}
  • cardinality
    集合的势,或者基数,指不同数值的个数,类似于sql中的distinct count的概念;
GET test_search_index/_search
{
  "size":0,
  "aggs":{
    "count_of_job":{
      "cardinality": {
        "field": "job.keyword" ##返回不同工作的个数
      }
    }
  }
}

多值分析,输出多个分析结果,stats/extended stats/percentile/percentile rank/top hits

  • stats/extended stats
GET test_search_index/_search
{
  "size":0,
  "aggs":{
    "stats_age":{
      "stats": {
        "field": "age"
      }
    }
  }
}
//更多统计数据
GET test_search_index/_search
{
  "size":0,
  "aggs":{
    "exstats_salary":{
      "extended_stats": {
        "field": "salary"
      }
    }
  }
}
  • percentile/percentile rank
    百分位数统计/百分位数排名
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "per_age": {
      "percentiles": {
        "field": "salary",
        "percents": [
          95,
          99,
          99.9
        ]
      }
    }
  }
}
//百分位数排名
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "per_salary": {
      "percentile_ranks": {
        "field": "salary",
        "values": [
          11000,
          30000
        ]
      }
    }
  }
}
  • top hits
    一般用于分桶后获取该桶内最匹配的顶部文档列表,即详情数据;
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "jobs": {
      "terms": {
        "field": "job.keyword",
        "size": 10
      },
      "aggs": {
        "top_employee": {
          "top_hits": {
            "size": 10,
            "sort": [
              {
                "age": {
                  "order": "desc"
                }
              }
            ]
          }
        }
      }
    }
  }
}

二 Bucket

  • terms
    直接按照term分桶,text类型,按照分词后的结果进行分桶;
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "jobs": {
      "terms": {
        "field": "job",
        "size": 5
      }
    }
  }
}
  • range
    通过指定数值的范围来设定分桶规则;
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "salary_range": {
      "range": {
        "field": "salary",
        "ranges": [
          {
            "key":"<10000",
            "to": 10000
          },
          {
            "from": 10000,
            "to": 20000
          },
          {
            "key":">20000",
            "from": 20000
          }
        ]
      }
    }
  }
}
  • date range
    通过指定日期的范围来进行分桶;
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "date_range": {
      "range": {
        "field": "birth",
        "format": "yyyy",
        "ranges": [
          {
            "from":"1980",
            "to": "1990"
          },
          {
            "from": "1990",
            "to": "2000"
          },
          {
            "from": "2000"
          }
        ]
      }
    }
  }
}
  • historgram
    直方图,以固定间隔的策略来分割数据;
GET test_search_index/_search
{
  "size":0,
  "aggs":{
    "salary_hist":{
      "histogram": {
        "field": "salary",
        "interval": 5000,
        "extended_bounds": {
          "min": 0,
          "max": 40000
        }
      }
    }
  }
}
  • date historgram
    针对日期的直方图或者柱状图;
GET test_search_index/_search
{
  "size":0,
  "aggs":{
    "by_year":{
      "date_histogram": {
        "field": "birth",
        "interval": "year",
        "format":"yyyy"
      }
    }
  }
}

三 Bucket+Matric

Bucket聚合分析允许通过添加子分析来进一步进行分析,子分析可以是Bucket,也可以时Metric;

  • bucket+bucket
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "jobs": {
      "terms": {
        "field": "job.keyword",
        "size": 10
      },
      "aggs": {
        "age_range": {
          "range": {
            "field": "age",
            "ranges": [
              {
                "to": 20
              },
              {
                "from": 20,
                "to": 30
              },
              {
                "from": 30
              }
            ]
          }
        }
      }
    }
  }
}
  • bucket+metric
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "jobs": {
      "terms": {
        "field": "job.keyword",
        "size": 10
      },
      "aggs": {
        "salary": {
          "stats": {
            "field": "salary"
          }
        }
      }
    }
  }
}

四 Pipeline

针对聚合分析的结果再次进行聚合分析,支持链式调用,且分析结果会输出原结果中,输出结果与现有聚合分析结果同级,称为Sibling;

  • Max/Min/Avg/Sum Bucket
GET test_search_index/_search
{
  "size":0,
  "aggs":{
    "jobs":{
      "terms": {
        "field": "job.keyword",
        "size": 10
      },
      "aggs":{
        "avg_salary":{
          "avg": {
            "field": "salary"
          }
        }
      }
    },
    "sum_salary_by_job":{
      "sum_bucket": {
        "buckets_path": "jobs>avg_salary"
      }
    }
  }
} 
  • Stats/Extended Stats Bucket
GET test_search_index/_search
{
  "size":0,
  "aggs":{
    "jobs":{
      "terms": {
        "field": "job.keyword",
        "size": 10
      },
      "aggs":{
        "avg_salary":{
          "avg": {
            "field": "salary"
          }
        }
      }
    },
    "stats_salary_by_job":{
      "stats_bucket": {
        "buckets_path": "jobs>avg_salary"
      }
    }
  }
} 
  • Percentiles Buckets
GET test_search_index/_search
{
  "size":0,
  "aggs":{
    "jobs":{
      "terms": {
        "field": "job.keyword",
        "size": 10
      },
      "aggs":{
        "avg_salary":{
          "avg": {
            "field": "salary"
          }
        }
      }
    },
    "percentiles_salary_by_job":{
      "percentiles_bucket": {
        "buckets_path": "jobs>avg_salary"
      }
    }
  }
} 

输出结果内嵌到现有聚合分析结果中,称为parent;

  • Deritave
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "birth": {
      "date_histogram": {
        "field": "birth",
        "interval": "year",
        "min_doc_count": 0
      },
      "aggs": {
        "avg_salary": {
          "avg": {
            "field": "salary"
          }
        },
        "derivative_avg_salary": {
          "derivative": {
            "buckets_path": "avg_salary"
          }
        }
      }
    }
  }
}
  • Moving Average
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "birth": {
      "date_histogram": {
        "field": "birth",
        "interval": "year",
        "min_doc_count": 0
      },
      "aggs": {
        "avg_salary": {
          "avg": {
            "field": "salary"
          }
        },
        "mavg_salary": {
          "moving_avg": {
            "buckets_path": "avg_salary"
          }
        }
      }
    }
  }
}
  • Cumulative Sum
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "birth": {
      "date_histogram": {
        "field": "birth",
        "interval": "year",
        "min_doc_count": 0
      },
      "aggs": {
        "avg_salary": {
          "avg": {
            "field": "salary"
          }
        },
        "cumulative_salary": {
          "cumulative_sum": {
            "buckets_path": "avg_salary"
          }
        }
      }
    }
  }
}

五 Scope

Es聚合分析默认作用范围时query结果集,可以通过filter/post_filter/global改变其作用范围;

  • filter
    不改变整体query语句的情况下,为某个聚合分析设定过滤条件,从而修改了作用范围;
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "jobs_salary_small": {
      "filter": {
        "range": {
          "salary": {
            "to": 10000
          }
        }
      },
      "aggs": {
        "jobs": {
          "terms": {
            "field": "job.keyword"
          }
        }
      }
    },
    "jobs": { ##jobs与jobs_salary_small同级
      "terms": {
        "field": "job.keyword"
      }
    }
  }
}
  • post-filter
    在聚合分析后,作用于文档过滤;
GET test_search_index/_search
{
  "aggs": {
    "jobs": {
      "terms": {
        "field": "job.keyword"
      }
    }
  },
  "post_filter": {
    "match":{
      "job.keyword":"java engineer"
    }
  }
}
  • global
    无视query过滤条件,基于全部文档进行分析;
GET test_search_index/_search
{
  "query": {
    "match": {
      "job.keyword": "java engineer"
    }
  },
  "aggs": {
    "java_avg_salary": {
      "avg": {
        "field": "salary"
      }
    },
    "all": {
      "global": {},
      "aggs": {
        "avg_salary": {
          "avg": {
            "field": "salary"
          }
        }
      }
    }
  }
}

六 Sort

  • .与>的区别
##当为json对象时使用>,当为基本数值统计时用.
##以薪水和降序排序
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "jobs": {
      "terms": {
        "field": "job.keyword",
        "size": 10,
        "order": [
          {
            "stats_salary.sum": "desc"
          }
        ]
      },
      "aggs": {
        "stats_salary": {
          "stats": {
            "field": "salary"
          }
        }
      }
    }
  }
}
##以5000间隔分桶,分桶的排序依赖于每个桶内大于10岁的平均年龄决定
GET test_search_index/_search
{
  "size": 0,
  "aggs": {
    "salary_hist": {
      "histogram": {
        "field": "salary",
        "interval": 5000,
        "order": {
          "age>avg_age": "desc"
        }
      },
      "aggs": {
        "age": {
          "filter": {
            "range": {
              "age": {
                "gte": 10
              }
            }
          },
          "aggs": {
            "avg_age": {
              "avg": {
                "field": "age"
              }
            }
          }
        }
      }
    }
  }
}

你可能感兴趣的:(ElasticSearch(五):Aggregation)