全能现代化高精模板(C++)
这里面的class bign
就是高精的类,里面有很多重载运算符,还有各种运算函数等等,很全。
一共200来行,可以把它写成一个头文件,或者塞进你自己的代码里。不用的可以删掉,提高速度。
#define MAX_L 666666 //最大长度,可以修改
class bign {
public:
int len, s[MAX_L]; //数的长度,记录数组
//构造函数
bign();
bign(const char *);
bign(int);
bool sign; //符号 1正数 0负数
string toStr() const; //转化为字符串,主要是便于输出
friend istream &operator>>(istream &, bign &); //重载输入流
friend ostream &operator<<(ostream &, bign &); //重载输出流
//重载复制
bign operator=(const char *);
bign operator=(int);
bign operator=(const string);
//重载各种比较
bool operator>(const bign &) const;
bool operator>=(const bign &) const;
bool operator<(const bign &) const;
bool operator<=(const bign &) const;
bool operator==(const bign &) const;
bool operator!=(const bign &) const;
//重载四则运算
bign operator+(const bign &) const;
bign operator++();
bign operator++(int);
bign operator+=(const bign &);
bign operator-(const bign &) const;
bign operator--();
bign operator--(int);
bign operator-=(const bign &);
bign operator*(const bign &)const;
bign operator*(const int num) const;
bign operator*=(const bign &);
bign operator/(const bign &) const;
bign operator/=(const bign &);
//四则运算的衍生运算
bign operator%(const bign &) const; //取模(余数)
bign factorial() const; //阶乘
bign Sqrt() const; //整数开根(向下取整)
bign pow(const bign &) const; //次方
//一些乱乱的函数
void clean();
~bign();
};
#define max(a, b) a > b ? a : b
#define min(a, b) a < b ? a : b
bign::bign() {
memset(s, 0, sizeof(s));
len = 1;
sign = 1;
}
bign::bign(const char *num) { *this = num; }
bign::bign(int num) { *this = num; }
string bign::toStr() const {
string res;
res = "";
for (int i = 0; i < len; i++) res = (char)(s[i] + '0') + res;
if (res == "")
res = "0";
if (!sign && res != "0")
res = "-" + res;
return res;
}
istream &operator>>(istream &in, bign &num) {
string str;
in >> str;
num = str;
return in;
}
ostream &operator<<(ostream &out, bign &num) {
out << num.toStr();
return out;
}
bign bign::operator=(const char *num) {
memset(s, 0, sizeof(s));
char a[MAX_L] = "";
if (num[0] != '-')
strcpy(a, num);
else
for (int i = 1; i < strlen(num); i++) a[i - 1] = num[i];
sign = !(num[0] == '-');
len = strlen(a);
for (int i = 0; i < strlen(a); i++) s[i] = a[len - i - 1] - 48;
return *this;
}
bign bign::operator=(int num) {
char temp[MAX_L];
sprintf(temp, "%d", num);
*this = temp;
return *this;
}
bign bign::operator=(const string num) {
const char *tmp;
tmp = num.c_str();
*this = tmp;
return *this;
}
bool bign::operator<(const bign &num) const {
if (sign ^ num.sign)
return num.sign;
if (len != num.len)
return len < num.len;
for (int i = len - 1; i >= 0; i--)
if (s[i] != num.s[i])
return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
return !sign;
}
bool bign::operator>(const bign &num) const { return num < *this; }
bool bign::operator<=(const bign &num) const { return !(*this > num); }
bool bign::operator>=(const bign &num) const { return !(*this < num); }
bool bign::operator!=(const bign &num) const { return *this > num || *this < num; }
bool bign::operator==(const bign &num) const { return !(num != *this); }
bign bign::operator+(const bign &num) const {
if (sign ^ num.sign) {
bign tmp = sign ? num : *this;
tmp.sign = 1;
return sign ? *this - tmp : num - tmp;
}
bign result;
result.len = 0;
int temp = 0;
for (int i = 0; temp || i < (max(len, num.len)); i++) {
int t = s[i] + num.s[i] + temp;
result.s[result.len++] = t % 10;
temp = t / 10;
}
result.sign = sign;
return result;
}
bign bign::operator++() {
*this = *this + 1;
return *this;
}
bign bign::operator++(int) {
bign old = *this;
++(*this);
return old;
}
bign bign::operator+=(const bign &num) {
*this = *this + num;
return *this;
}
bign bign::operator-(const bign &num) const {
bign b = num, a = *this;
if (!num.sign && !sign) {
b.sign = 1;
a.sign = 1;
return b - a;
}
if (!b.sign) {
b.sign = 1;
return a + b;
}
if (!a.sign) {
a.sign = 1;
b = bign(0) - (a + b);
return b;
}
if (a < b) {
bign c = (b - a);
c.sign = false;
return c;
}
bign result;
result.len = 0;
for (int i = 0, g = 0; i < a.len; i++) {
int x = a.s[i] - g;
if (i < b.len)
x -= b.s[i];
if (x >= 0)
g = 0;
else {
g = 1;
x += 10;
}
result.s[result.len++] = x;
}
result.clean();
return result;
}
bign bign::operator*(const bign &num) const {
bign result;
result.len = len + num.len;
for (int i = 0; i < len; i++)
for (int j = 0; j < num.len; j++) result.s[i + j] += s[i] * num.s[j];
for (int i = 0; i < result.len; i++) {
result.s[i + 1] += result.s[i] / 10;
result.s[i] %= 10;
}
result.clean();
result.sign = !(sign ^ num.sign);
return result;
}
bign bign::operator*(const int num) const {
bign x = num;
bign z = *this;
return x * z;
}
bign bign::operator*=(const bign &num) {
*this = *this * num;
return *this;
}
bign bign::operator/(const bign &num) const {
bign ans;
ans.len = len - num.len + 1;
if (ans.len < 0) {
ans.len = 1;
return ans;
}
bign divisor = *this, divid = num;
divisor.sign = divid.sign = 1;
int k = ans.len - 1;
int j = len - 1;
while (k >= 0) {
while (divisor.s[j] == 0) j--;
if (k > j)
k = j;
char z[MAX_L];
memset(z, 0, sizeof(z));
for (int i = j; i >= k; i--) z[j - i] = divisor.s[i] + '0';
bign dividend = z;
if (dividend < divid) {
k--;
continue;
}
int key = 0;
while (divid * key <= dividend) key++;
key--;
ans.s[k] = key;
bign temp = divid * key;
for (int i = 0; i < k; i++) temp = temp * 10;
divisor = divisor - temp;
k--;
}
ans.clean();
ans.sign = !(sign ^ num.sign);
return ans;
}
bign bign::operator/=(const bign &num) {
*this = *this / num;
return *this;
}
bign bign::operator%(const bign &num) const {
bign a = *this, b = num;
a.sign = b.sign = 1;
bign result, temp = a / b * b;
result = a - temp;
result.sign = sign;
return result;
}
bign bign::pow(const bign &num) const {
bign result = 1;
for (bign i = 0; i < num; i++) result = result * (*this);
return result;
}
bign bign::factorial() const {
bign result = 1;
for (bign i = 1; i <= *this; i++) result *= i;
return result;
}
void bign::clean() {
if (len == 0)
len++;
while (len > 1 && s[len - 1] == '\0') len--;
}
bign bign::Sqrt() const {
if (*this < 0)
return -1;
if (*this <= 1)
return *this;
bign l = 0, r = *this, mid;
while (r - l > 1) {
mid = (l + r) / 2;
if (mid * mid > *this)
r = mid;
else
l = mid;
}
return l;
}
bign::~bign() {}
inline bign quickmi(ll xx, ll n) {
bign x = xx, res = 1;
for (; n; n >>= 1) {
if (n & 1)
res *= x;
x *= x;
}
return res;
}