Splunk初识

目录

  • 网址汇总
  • 注册与下载
  • 安装
  • 使用
    • 中文环境
    • 关于APP
      • Splunk自带的APP
      • 创建自己的APP
    • 添加数据
      • 本地文件添加
      • 通过监视添加数据
      • 自定义列
    • 查询语句
      • SPL 与 SQL对照
      • 命令查找
      • accum
      • addcoltotals
      • addtotals
      • stats
      • eval
      • head
      • timechart
      • chart
      • sort
      • dedup
      • fields
      • 能够出可视化图表的命令
    • 关于仪表板面板
      • 通过Search创建Dashboard
      • 配置仪表板的导航
      • 使用自定义的JS 与CSS

网址汇总

官网:https://www.splunk.com/

下载:https://www.splunk.com/en_us/download.html

文档:https://docs.splunk.com/Documentation/Splunk/8.0.0

管理员手册:https://docs.splunk.com/images/0/00/Splunk-6.5.0-zh_CN-Admin.pdf

注册与下载

注: 官网注册账号需要审核,下载链接只有登录才能获得,可以直接使用下面的下载链接。可以直接下载,链接是免费版的Splunk

1. windows下载链接:https://download.splunk.com/products/splunk/releases/8.0.0/windows/splunk-8.0.0-1357bef0a7f6-x64-release.msi
2. rpm下载链接: https://download.splunk.com/products/splunk/releases/8.0.0/linux/splunk-8.0.0-1357bef0a7f6-linux-2.6-x86_64.rpm
3. tgz下载链接:https://download.splunk.com/products/splunk/releases/8.0.0/linux/splunk-8.0.0-1357bef0a7f6-Linux-x86_64.tgz

安装

# 使用 tgz 进行安装 
tar -xf splunk-8.0.0-1357bef0a7f6-Linux-x86_64.tgz
cd ./splunk/bin
./splunk startcurl
#

用物理机 访问 hostname:8000,输入账号密码。

使用

中文环境

默认进入的环境是英文环境,可以直接改url

默认的:http://test:8000/en-GB/app/launcher/home

更改为:http://test:8000/zh-CN/app/launcher/home

第一次进入的时候,会有使用教程进行提示

关于APP

APPs会为一些想要使用的场景提供解决方案,不能的APP可能是对业务层面的隔离,也可能具体到某曾数据层面的隔离。比如:我拥有一组服务器的LOG而对于这个LOG可能就可以创建一个APP,里面都是对于LOG信息的可视化展示。

Splunk自带的APP

Splunk提供了一组APP,可以直接安装在你的Server上,访问:http://test:8000/zh-CN/manager/launcher/appsremote?offset=0&count=20&order=latest。可以查找应用。

推荐安装Splunk Dashboard Examples来学习。需要登录官方账号与密码。

Splunk初识_第1张图片

可以通过例子,对Splunk有一个深入的了解。

创建自己的APP

进入管理应用:http://test:8000/zh-CN/manager/simple_xml_examples/apps/local 右上角有创建APP

Splunk初识_第2张图片

进入APP

Splunk初识_第3张图片

添加数据

点击如图的位置进行数据添加。

Splunk初识_第4张图片

添加数据可以直接从Splunk的合作平台直接链接过来。我们尝试手动添加数据。

Splunk初识_第5张图片

本地文件添加

到官网查看 支持的本地文件类型:https://docs.splunk.com/Documentation/Splunk/8.0.0/SearchTutorial/AboutgettingdataintoSplunk。

如下是我提取的表格:

Data source Description
Files and directories Most data that you might be interested in comes directly from files and directories.
Network events The Splunk software can index remote data from any network port and SNMP events from remote devices.
IT Operations Data from IT Ops, such as Nagios, NetApp, and Cisco.
Cloud services Data from Cloud services, such as AWS and Kinesis.
Database services Data from databases such as Oracle, MySQL, and Microsoft SQL Server.
Security services Data from security services such as McAfee, Microsoft Active Directory, and Symantec Endpoint Protection.
Vituralization services Data from virtualization services such as VMWare and XenApp.
Application servers Data from application servers such as JMX & JMS, WebLogic, and WebSphere.
Windows sources The Windows version of Splunk software accepts a wide range of Windows-specific inputs, including Windows Event Log, Windows Registry, WMI, Active Directory, and Performance monitoring.
Other sources Other input sources are supported, such as FIFO queues and scripted inputs for getting data from APIs, and other remote data interfaces.

CSV文件

准备了这样一份CSV

Splunk初识_第6张图片

按照步骤依次

全部默认就可以。

我们点击开始搜索查看数据

Splunk初识_第7张图片

返回到APP首页可以查看数据已经有了

Splunk初识_第8张图片

LOG文件

准备这样一份log文件

[2019-04-04 11:33:32.722]: entering -- org.netbeans.installer.Installer.main():81
[2019-04-04 11:33:32.725]: initializing the installer engine
[2019-04-04 11:33:32.725]:     entering -- org.netbeans.installer.Installer.():116
[2019-04-04 11:33:32.725]:     ... initializing ErrorHandler
[2019-04-04 11:33:32.726]:     ... end of ErrorHandler initialization
[2019-04-04 11:33:32.726]:     exiting -- org.netbeans.installer.Installer.():116
[2019-04-04 11:33:32.726]:     entering -- org.netbeans.installer.Installer.():117
[2019-04-04 11:33:32.727]:     dumping target system information
[2019-04-04 11:33:32.727]:         system properties:
[2019-04-04 11:33:32.728]:             awt.toolkit => sun.awt.windows.WToolkit
[2019-04-04 11:33:32.728]:             file.encoding => GBK
[2019-04-04 11:33:32.729]:             file.encoding.pkg => sun.io
[2019-04-04 11:33:32.729]:             file.separator => \
[2019-04-04 11:33:32.729]:             java.awt.graphicsenv => sun.awt.Win32GraphicsEnvironment
[2019-04-04 11:33:32.729]:             java.awt.printerjob => sun.awt.windows.WPrinterJob

查看数据

Splunk初识_第9张图片

通过监视添加数据

我们选择添加数据监视

Splunk初识_第10张图片
监测一个文件

Splunk初识_第11张图片

自定义列

有些时候Splunk可能无法自动识别列,我们可以自定义规则来提取列

Splunk初识_第12张图片

我自定义一个log type的列,提取log中标识当前属于什么log的位置。这样我们就可以对这个系统的log进行分析。

Splunk初识_第13张图片

查询语句

Splunk将数据导入后,通过SPL将数据查询出来,然后通过可视化工具进行显示。

SPL 与 SQL对照

访问:https://docs.splunk.com/Documentation/Splunk/8.0.0/SearchReference/SQLtoSplunk

SQL command SQL example Splunk SPL example 备注
SELECT * SELECT * FROM mytable source=mytable source就相当于table
WHERE SELECT * FROM mytable WHERE mycolumn=5 source=mytable mycolumn=5
SELECT SELECT mycolumn1, mycolumn2 FROM mytable source=mytable | FIELDS mycolumn1, mycolumn2 通过fields可以规定查询哪几列
AND/OR SELECT * FROM mytable WHERE (mycolumn1="true" OR mycolumn2="red") AND mycolumn3="blue" source=mytable AND (mycolumn1="true" OR mycolumn2="red") AND mycolumn3="blue"
AS (alias) SELECT mycolumn AS column_alias FROM mytable source=mytable | RENAME mycolumn as column_alias | FIELDS column_alias rename关键字
BETWEEN SELECT * FROM mytable WHERE mycolumn BETWEEN 1 AND 5 source=mytable mycolumn>=1 mycolumn<=5
GROUP BY SELECT mycolumn, avg(mycolumn) FROM mytable WHERE mycolumn=value GROUP BY mycolumn source=mytable mycolumn=value | STATS avg(mycolumn) BY mycolumn | FIELDS mycolumn, avg(mycolumn) stats对结果分组,并取平均值
LEFT (OUTER) JOIN SELECT * FROM mytable1 LEFT JOIN mytable2 ON mytable1.mycolumn= mytable2.mycolumn source=mytable1 | JOIN type=left mycolumn [SEARCH source=mytable2] [SEARCH..]相当于一个子查询了,然后进行连接
TRUNCATE TABLE TRUNCATE TABLE mytable source=mytable | DELETE
UNION SELECT mycolumn FROM mytable1 UNION SELECT mycolumn FROM mytable2 source=mytable1 | APPEND [SEARCH source=mytable2] | DEDUP mycolumn APPEND相当于将当前查询与子查询组合起来
UNION ALL SELECT * FROM mytable1 UNION ALL SELECT * FROM mytable2 source=mytable1 | APPEND [SEARCH source=mytable2] 区别在于,不需要去重字段

命令查找

https://docs.splunk.com/Documentation/Splunk/6.6.0/SearchReference/Abstract

accum

累计求和

host="bmp-mysql" source="splunk_kane_test.csv"| accum age as test | table test,age
test age
20(20) 20
50(20+30) 30
81(20+30+31)(51+31) 31

addcoltotals

增加单列求和

host="bmp-mysql" source="splunk_kane_test.csv"| addcoltotals age sex|table _time,age

会在age,sex两列的最下面增加总数的计算。589、11都是整列的求和,没写的列不会求和

_time age sex
2019/12/02 10:48:21 25 1
2019/12/02 10:48:21 ...
589 11##

addtotals

对列、行求和

host="bmp-mysql" source="splunk_kane_test.csv"|table Name age sex| addtotals  fieldname="Row Totals" col=true labelfield=Name label=Total
# fieldname是对行求和新加的列
# col = true意思是队列求和 false就不求和了
# labelfield对列求和刨除的列,相应的求和的标签也会放在这一列的下面
# label对列求和的标签
Name age sex Row Totals
name22 20 1 21
... ... ... ...
Total 589 11 600

stats

对数据进行分组

host="bmp-mysql" source="splunk_kane_test.csv"|table Name age sex| stats avg(age)  as avg_age by sex
#通过sex对age进行分区,并取平均值
sex avg_age
0 26.545454545454547
1 27

关于stats中可以使用的方法

Type of function Supported functions and syntax
Aggregate functions avg() count() distinct_count() estdc() estdc_error() exactperc() max() median() min() mode() perc() range() stdev() stdevp() sum() sumsq() upperperc() var() varp()
Event order functions first() last()
Multivalue stats and chart functions list() values()
Time functions earliest() earliest_time() latest() latest_time() rate()

eval

通过表达式进行一些计算

host="bmp-mysql" source="splunk_kane_test.csv"|table Name age sex| eval test=age+sex |table test,age
# 算age与sex的合,给新的列test。最终将test列结果输出出来
test age sex
25 25 0
26 25 1
29 29 0
31 30 1

eval可以用if case很多函数,参照https://docs.splunk.com/Documentation/Splunk/8.0.0/SearchReference/Eval#Functions

关于if的例子

host="bmp-mysql" source="splunk_kane_test.csv"|table Name age sex| eval test=if(sex=="1","男","女") |table test,age,sex

限制结果的数量

host="bmp-mysql" source="splunk_kane_test.csv"|table Name age sex| eval test=if(sex=="1","男","女") |table test,age,sex|head 1
# 只显示第一行了

timechart

新建时间序列图表,这个查询会默认添加上_time这一列

host="bmp-mysql" source="splunk_kane_test.csv"|timechart avg(age) by sex
# 这个要表达的意思是 统计每种性别的平均年龄,并且统计每个时间段的
_time 0 1
2019/12/01 16:00:00
2019/12/02 10:30:00 26.545454545454547 27

Splunk初识_第14张图片

会出一个这样的图。如果每个时间段都有数据进来的话,就会统计每个时间段内进来的数据,按照性别区分的平均年龄

chart

制作图表,这个不带有时间,直接通过sex计算平均值

host="bmp-mysql" source="splunk_kane_test.csv"|chart avg(age) by sex

sort

对字段排序,可多字段

host="bmp-mysql" source="splunk_kane_test.csv"|chart avg(age) by sex | sort - sex
# sex 倒序

dedup

对列去重

fields

列出列,不列出的列在结果中不显示

能够出可视化图表的命令

Splunk中有一种类型的命令叫做transfroming command这些命令,可以出可视化的图表

addtotals,chart,cofilter,contingency,eventstats,history,makecontinuous,mvcombine,rare,stats,table,timechart,top,xyseries
# 常用的有
addtotals,chart,stats,table,timechart

关于仪表板面板

通过Search创建Dashboard

host="bmp-mysql" source="splunk_kane_test.csv"|stats values(age) by Name

统计信息

Splunk初识_第15张图片

可视化图表,可切换图表的显示方式
Splunk初识_第16张图片

另存为仪表板面板在右上角

Splunk初识_第17张图片

查看仪表板

Splunk初识_第18张图片
我们可以在编辑页面里面继续修改

配置仪表板的导航

设置(Settings) -----> 用户界面(User Interfaces) -----------> Navigation menus
选中自己的APP然后进行编辑下面的是默认的

使用自定义的JS 与CSS

Splunk初识_第19张图片

Splunk初识_第20张图片

我们可以这样上传自己的自定义的文件,此操作会在服务器上当前APP的目录/splunk/splunk/etc/apps/test下创建/appserver/static并在这个文件夹下。

你可能感兴趣的:(Splunk初识)