Pandas学习笔记1-基本操作

Pandas有两种数据结构类型,一个是Series,另一个是DataFrame

Series

Series是一种一维数据结构,类似字典或者Numpy中元素带标签的数组。但是比字典更为强大。其中每一个元素都有一个标签(索引),标签可以是数字或者字符串。具有索引,具有键值对应关系,能够排序,切片Slice等等操作。

DataFrame

DataFrame是一个二维的表结构。Pandas的DataFrame可以存储许多种不同的数据类型,但是每一个列的数据都是同一个数据类型,并且每一个坐标轴都有自己的标签(索引)。你可以把它想象成一个Series的字典项。

1.1 创建Series

利用一个List创建一个Series,Pandas会默认创建整型索引

import pandas as pd
import numpy as np

s =pd.Series([0,1,2,3,4,np.NAN,5,'A'])

In [74]:s
Out[74]: 
0      0
1      1
2      2
3      3
4      4
5    NaN
6      5
7      A
dtype: object

2.1 创建DataFrame

方法一:使用一个数组array,指定索引,列名

dates = pd.date_range('20130101',periods=6)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['A','B','C','D'])
In [76]:df
Out[76]: 
                   A         B         C         D
2013-01-01 -2.359309 -0.065001  1.099911 -0.886392
2013-01-02  0.318336  0.715261  0.060752  1.326758
2013-01-03  0.515914  1.482326 -0.973154  1.766126
2013-01-04  1.875221 -0.316619 -0.543997  0.864037
2013-01-05 -0.697887  0.065137 -0.899040  0.826392
2013-01-06 -0.205943 -1.532289  1.849114  1.267895

方法二:使用字典创建DataFrame

df2 = pd.DataFrame({'A':1,
                    'B':pd.Timestamp('20130102'),
                    'C':pd.Series(1,index=range(4)),
                    'D':np.array([3]*4,dtype='int'),
                    'E':'foo'})

In [78]:df2
Out[78]: 
   A          B  C  D    E
0  1 2013-01-02  1  3  foo
1  1 2013-01-02  1  3  foo
2  1 2013-01-02  1  3  foo
3  1 2013-01-02  1  3  foo

2.1.1 常用的基本功能

1、查看前N行或者后M行数据

In [80]:df.head(2)
Out[80]: 
                   A         B         C         D
2013-01-01 -2.359309 -0.065001  1.099911 -0.886392
2013-01-02  0.318336  0.715261  0.060752  1.326758
In [81]:df.tail(2)
Out[81]: 
                   A         B         C         D
2013-01-05 -0.697887  0.065137 -0.899040  0.826392
2013-01-06 -0.205943 -1.532289  1.849114  1.267895

2、查看索引

In [82]:df.index
Out[82]: 

[2013-01-01, ..., 2013-01-06]
Length: 6, Freq: D, Timezone: None

3、查看值

In [83]:df.values
Out[83]: 
array([[-2.35930948, -0.06500052,  1.09991148, -0.88639213],
       [ 0.31833619,  0.71526129,  0.06075226,  1.32675777],
       [ 0.51591397,  1.48232627, -0.97315391,  1.76612637],
       [ 1.87522057, -0.31661914, -0.54399686,  0.86403681],
       [-0.69788733,  0.06513657, -0.89903951,  0.82639165],
       [-0.20594297, -1.53228941,  1.84911405,  1.26789462]])

4、查看列名

In [84]:df.columns
Out[84]: Index([u'A', u'B', u'C', u'D'], dtype='object')In [85]: 

In [85]:df.dtypes
Out[85]: 
A    float64
B    float64
C    float64
D    float64
dtype: object

5、查看数据有多少行

In [74]:len(df)
Out[74]: 6

6、查看数据Summary信息(均值、方差、最小、最大,分位数)

In [9]:df.describe()
Out[9]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.329473  0.087595 -0.172075  0.308271
std    0.595492  1.106105  0.524659  0.864240
min   -0.218562 -1.454443 -0.992808 -0.790523
25%    0.112395 -0.458519 -0.362685 -0.434517
50%    0.135337  0.000715 -0.197997  0.653177
75%    0.281296  0.630096  0.137386  0.864773
max    1.490029  1.750290  0.524751  1.195568

7、复制一个完全一样的对象

In [11]:df2 = df.copy()  
In [11]:df2
Out[11]: 
                   A         B         C         D
2013-01-01  0.134964 -1.454443 -0.310064  1.195568
2013-01-02  1.490029 -0.561749  0.524751  0.522473
2013-01-03  0.329824  1.750290 -0.085930  0.891737
2013-01-04  0.135711 -0.148830 -0.380225 -0.753513
2013-01-05  0.104873  0.150260  0.211825 -0.790523
2013-01-06 -0.218562  0.790041 -0.992808  0.783881

8、对数据进行行列转置

In [12]:df.T
Out[12]: 
   2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.134964    1.490029    0.329824    0.135711    0.104873   -0.218562
B   -1.454443   -0.561749    1.750290   -0.148830    0.150260    0.790041
C   -0.310064    0.524751   -0.085930   -0.380225    0.211825   -0.992808
D    1.195568    0.522473    0.891737   -0.753513   -0.790523    0.783881  

9、对数据进行行列转置

In [12]:df.T
Out[12]: 
   2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.134964    1.490029    0.329824    0.135711    0.104873   -0.218562
B   -1.454443   -0.561749    1.750290   -0.148830    0.150260    0.790041
C   -0.310064    0.524751   -0.085930   -0.380225    0.211825   -0.992808
D    1.195568    0.522473    0.891737   -0.753513   -0.790523    0.783881  

10、对数据进行行列转置

df.set_index=df['A']

11、对数据进行行列转置

In [74]:df2.columns = ['E','F','G','H']
In [74]:df2
Out[74]: 
                   E         F         G         H
2013-01-01  0.134964 -1.454443 -0.310064  1.195568
2013-01-02  1.490029 -0.561749  0.524751  0.522473
2013-01-03  0.329824  1.750290 -0.085930  0.891737
2013-01-04  0.135711 -0.148830 -0.380225 -0.753513
2013-01-05  0.104873  0.150260  0.211825 -0.790523
2013-01-06 -0.218562  0.790041 -0.992808  0.783881

2.1.2 进行选择、过滤、切片等操作

索引,根据标签(索引)进行行操作

  • loc是字符串标签的索引方法,
  • iloc是数字标签的索引方法,
  • ix是一个字符串标签的索引方法,同样支持数字标签索引作为它的备选。

备注:ix虽然支持字符和数字切片,但有一些轻微的不可预测性,数字标签可能会让ix做出一些奇怪的事情,例如将一个数字解释成一个位置。而loc和iloc则为你带来了安全的、可预测的。ix要比loc和iloc更快。虽然loc是对字符串进行索引,但是如果索引是数字的时候,loc也可以进行索引,貌似有一点矛盾,需要实操时进行体会。

1、选择一列

- 方法一、df['A']
- 方法二、df.A
- 方法三、df.loc[:,['A']]
In [20]:df['A']
Out[20]: 
2013-01-01    0.134964
2013-01-02    1.490029
2013-01-03    0.329824
2013-01-04    0.135711
2013-01-05    0.104873
2013-01-06   -0.218562
Freq: D, Name: A, dtype: float64

2、选择两列或者多列

- 方法一、df[['A','B']]
- 方法二、df.loc[:,['A','B']]
- 方法三、df.ix[:,['A','B']]
In [20]:df[['A','B']]
Out[29]: 
                   A         B
2013-01-01  0.134964 -1.454443
2013-01-02  1.490029 -0.561749
2013-01-03  0.329824  1.750290
2013-01-04  0.135711 -0.148830
2013-01-05  0.104873  0.150260
2013-01-06 -0.218562  0.790041

3、根据某一列或者几列进行条件筛选

In [30]:df[(df.A>0) & (df.B<0)]
Out[30]: 
                   A         B         C         D
2013-01-01  0.134964 -1.454443 -0.310064  1.195568
2013-01-02  1.490029 -0.561749  0.524751  0.522473
2013-01-04  0.135711 -0.148830 -0.380225 -0.753513

4、索引是数字的使用iloc

In [35]: df1 = pd.DataFrame(np.random.randn(4,4),index=[1,2,3,4],columns=['A','B','C','D'])
In [36]: df1
Out[36]: 
          A         B         C         D
1  0.913335 -0.209641 -0.994628 -0.300057
2  1.260923  0.405731 -0.566145 -1.114782
3  0.437972  1.800594 -0.269038 -0.038466
4 -0.239472  0.290871  0.207056  0.105834
#查看某一行
In [40]: df.iloc[3]
Out[40]: 
A    0.135711
B   -0.148830
C   -0.380225
D   -0.753513
Name: 2013-01-04 00:00:00, dtype: float64
#由于df1的索引是数字,体会一会这里使用loc和iloc的区别
In [25]:df1.loc[1:2]
Out[25]: 
          A         B         C         D
1 -0.762372 -0.390335  0.037414  2.104834
2  1.265755 -0.113307  1.443822 -2.765101

In [26]:df1.iloc[1:2]
Out[26]: 
          A         B         C         D
2  1.265755 -0.113307  1.443822 -2.765101
#查看第二行到第三行
In [69]:df.iloc[1:3,:]
Out[69]: 
                   A         B         C         D
2013-01-02  1.490029 -0.561749  0.524751  0.522473
2013-01-03  0.329824  1.750290 -0.085930  0.891737
#查看第一行到第二行,第一列到第三列
In [70]:df.iloc[0:2,0:3]
Out[70]: 
                   A         B         C
2013-01-01  0.134964 -1.454443 -0.310064
2013-01-02  1.490029 -0.561749  0.524751
#挑某几列进行查看,如位置第1,2,4行,第0,2列
In [71]:df.iloc[[1,2,4],[0,2]]
Out[71]: 
                   A         C
2013-01-02  1.490029  0.524751
2013-01-03  0.329824 -0.085930
2013-01-05  0.104873  0.211825

5、索引不是数字,是字符的使用loc

#索引是Date挑 '2013-01-03':'2013-01-05'几行
In [54]:df.loc['2013-01-03':'2013-01-05']
Out[54]: 
                   A        B         C         D
2013-01-03  0.329824  1.75029 -0.085930  0.891737
2013-01-04  0.135711 -0.14883 -0.380225 -0.753513
2013-01-05  0.104873  0.15026  0.211825 -0.790523
In [55]:df.ix['2013-01-03':'2013-01-05']
Out[55]: 
                   A        B         C         D
2013-01-03  0.329824  1.75029 -0.085930  0.891737
2013-01-04  0.135711 -0.14883 -0.380225 -0.753513
2013-01-05  0.104873  0.15026  0.211825 -0.790523
#第1到3列
In [53]:df.iloc[:,1:3]
Out[53]: 
                   B         C
2013-01-01 -1.454443 -0.310064
2013-01-02 -0.561749  0.524751
2013-01-03  1.750290 -0.085930
2013-01-04 -0.148830 -0.380225
2013-01-05  0.150260  0.211825
2013-01-06  0.790041 -0.992808
# 第3到5行,A、B列
In [52]:df.loc['2013-01-03':'2013-01-05',['A','B']]
Out[52]: 
                   A        B
2013-01-03  0.329824  1.75029
2013-01-04  0.135711 -0.14883
2013-01-05  0.104873  0.15026
In [56]:df.ix[1:2]
Out[56]: 
                   A         B         C         D
2013-01-02  1.490029 -0.561749  0.524751  0.522473

6、排序

#对索引排序
In [57]:df.sort_index(ascending=False)
Out[57]: 
                   A         B         C         D
2013-01-06 -0.218562  0.790041 -0.992808  0.783881
2013-01-05  0.104873  0.150260  0.211825 -0.790523
2013-01-04  0.135711 -0.148830 -0.380225 -0.753513
2013-01-03  0.329824  1.750290 -0.085930  0.891737
2013-01-02  1.490029 -0.561749  0.524751  0.522473
2013-01-01  0.134964 -1.454443 -0.310064  1.195568

#根据某一列进行排序
In [58]:df.sort(columns='B')
Out[58]: 
                   A         B         C         D
2013-01-01  0.134964 -1.454443 -0.310064  1.195568
2013-01-02  1.490029 -0.561749  0.524751  0.522473
2013-01-04  0.135711 -0.148830 -0.380225 -0.753513
2013-01-05  0.104873  0.150260  0.211825 -0.790523
2013-01-06 -0.218562  0.790041 -0.992808  0.783881
2013-01-03  0.329824  1.750290 -0.085930  0.891737


#根据某几列进行排序
In [59]:df.sort(columns=['A','B'])
Out[59]: 
                   A         B         C         D
2013-01-06 -0.218562  0.790041 -0.992808  0.783881
2013-01-05  0.104873  0.150260  0.211825 -0.790523
2013-01-01  0.134964 -1.454443 -0.310064  1.195568
2013-01-04  0.135711 -0.148830 -0.380225 -0.753513
2013-01-03  0.329824  1.750290 -0.085930  0.891737
2013-01-02  1.490029 -0.561749  0.524751  0.522473


7、缺失值处理

In [66]:df3 = df.reindex(index=dates[0:4], columns = list(df.columns)+['E'])
In [66]:df3.loc[dates[0]:dates[1],['E']]=1
In [66]:df3
Out[63]: 
                   A         B         C         D   E
2013-01-01  0.134964 -1.454443 -0.310064  1.195568   1
2013-01-02  1.490029 -0.561749  0.524751  0.522473   1
2013-01-03  0.329824  1.750290 -0.085930  0.891737 NaN
2013-01-04  0.135711 -0.148830 -0.380225 -0.753513 NaN

# 删除缺失值
In [60]: df3.dropna(how='any')
Out[60]: 
                   A         B         C         D  E
2013-01-01  0.134964 -1.454443 -0.310064  1.195568  1
2013-01-02  1.490029 -0.561749  0.524751  0.522473  1

# 对缺失值进行填充
In [68]:df3.fillna(value=5)
Out[68]: 
                   A         B         C         D  E
2013-01-01  0.134964 -1.454443 -0.310064  1.195568  1
2013-01-02  1.490029 -0.561749  0.524751  0.522473  1
2013-01-03  0.329824  1.750290 -0.085930  0.891737  5
2013-01-04  0.135711 -0.148830 -0.380225 -0.753513  5

2.1.3 使用函数求值以及Apply的使用方法

In [69]:df.mean()
Out[69]: 
A    0.634212
B   -0.517503
C   -0.360313
D   -0.178633
dtype: float64

In [70]:df.apply(np.cumsum)
Out[70]: 
                   A         B         C         D
2013-01-01 -1.083703 -0.984847  0.231595  0.764466
2013-01-02 -0.277971 -0.737865 -0.366301 -0.768202
2013-01-03 -0.271485 -1.006928 -0.246741 -0.483353
2013-01-04  2.491598  0.096372 -2.159432 -0.331738
2013-01-05  2.624991 -1.882532 -2.445247 -1.636275
2013-01-06  3.805273 -3.105017 -2.161877 -1.071797

In [71]:df.apply(lambda x: x.max() - x.min())
Out[71]: 
A    3.846786
B    3.082203
C    2.196061
D    2.297133
dtype: float64


未完待续,接着在Pandas学习笔记二中继续学习...

你可能感兴趣的:(Pandas学习笔记1-基本操作)