import torch
import torch.utils.data as Data
from torch.autograd import Variable
import matplotlib.pyplot as plt
import torch.nn as nn
import torchvision
# Hyper parameters
EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 50
LR = 0.001 # learning rate
DOWNLOAD_MNIST = False
train_data = torchvision.datasets.MNIST(
root='./mnist',
train=True,
transform=torchvision.transforms.ToTensor(), # (0,1) (0-255)
download=DOWNLOAD_MNIST,
)
# plot one example
# print(train_data.train_data.size()) # (60000,28,28)
# print(train_data.train_labels.size()) # (60000)
# plt.imshow(train_data.train_data[0].numpy(),cmap='gray')
# plt.title('%i' % train_data.train_labels[0])
# plt.show()
train_loader = Data.DataLoader(
dataset=train_data,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=2,
)
test_data = torchvision.datasets.MNIST(root='./mnist',train=False)
test_x = Variable(torch.unsqueeze(test_data.test_data,dim=1),volatile=True).type(torch.FloatTensor)[:2000]/255. # shape from (2000,28,28) to (2000,1,28,28), value in range(0,1)
test_y = test_data.test_labels[:2000]
class CNN(nn.Module):
def __init__(self):
super(CNN,self).__init__()
# 卷积层
self.conv1 = nn.Sequential(
nn.Conv2d( # (1,28,28)
in_channels=1,
out_channels=16,
kernel_size=5,
stride=1, # 跳度
padding=2, # if stride = 1, padding = (kernel_size-1)/2 = (5-1)/2
), # 卷积层 过滤器 -> (16,28,28)
nn.ReLU(), # 神经网络 -> (16,28,28)
nn.MaxPool2d(kernel_size=2), # -> (16,14,14)
)
self.conv2 = nn.Sequential( # (16,14,14)
nn.Conv2d(16,32,5,1,2), # -> (32,14,14)
nn.ReLU(), # -> (32,14,14)
nn.MaxPool2d(2), # -> (32,7,7)
)
self.out = nn.Linear(32*7*7,10)
def forward(self,x):
x = self.conv1(x)
x = self.conv2(x) # (batch,32,7,7)
x = x.view(x.size(0),-1) # (batch,32*7*7)
output = self.out(x)
return output
cnn = CNN()
# print(cnn) # net architecture
optimizer = torch.optim.Adam(cnn.parameters(),lr=LR) # optimizer all cnn parameters
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
# training and testing
for epoch in range(EPOCH):
for step,(x,y) in enumerate(train_loader):
b_x = Variable(x)
b_y = Variable(y)
output = cnn(b_x)
loss = loss_func(output,b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 50 == 0:
test_output = cnn(test_x)
pred_y = torch.max(test_output,1)[1].data.squeeze()
accuracy = sum(pred_y == test_y) / float(test_y.size(0))
print('Epoch: ',epoch,'| train loss: %.4f' % loss.data[0],'| test accuracy: %.2f' % accuracy)
# print 10 predictions from test data
test_output = cnn(test_x[:10])
pred_y = torch.max(test_output,1)[1].data.numpy().squeeze()
print(pred_y,'prediction number')
print(test_y[:10].numpy(),'real number')