- Pytorch机器学习——3 神经网络(三)
辘轳鹿鹿
outline神经元与神经网络激活函数前向算法损失函数反向传播算法数据的准备PyTorch实例:单层神经网络实现3.2激活函数3.2.2TanhTanh是一个双曲三角函数,其公式如下所示:image.png从图像上可以看出,与Sigmoid不同,它将输入变量映射到(-1,1)之间,它是Sigmoid函数经过简单的变换得到的。导数优缺点:优点:由于其图形在定义域0附近近似线性,并且在整个定义域有可导
- 2018-11-21
海边的桃源
图片发自App我觉得很孤独。周边的人或在打牌、游戏、匆匆路过……而我独自自己的孤独,其实这情况已经持续了很久了。没人在意我,也许我也没有在意别人,本来便都是孤独的个体吧。继续孤独的喝我的啤酒,晚点回去做不孤独的梦,梦里才是多彩的世界。昨晚做了很多梦,一个梦是这样的:一个小孩要穿过一条道路向前,道路的两边是栅栏,栅栏里面是学校还有很多孩子和老师。我不知道那个小孩是不是我的,只是提早和栅栏里的人说,明
- 机器学习系列12:反向传播算法
SuperFengCode
机器学习系列机器学习神经网络反向传播算法梯度检验机器学习笔记
当我们要运用高级算法进行梯度下降时,需要计算两个值,代价函数和代价函数的偏导数:代价函数我们之前已经知道怎么求了,现在只需要求代价函数的偏导数即可。采用如下方法,先进行前向传播算法,然后再进行反向传播算法(BackpropagationAlgorithm),反向传播算法与前向传播算法方向相反,它用来求代价函数的偏导数。具体过程看下图:用δ作为误差,计算方法为:有时我们在运用反向传播算法时会遇到bu
- 李宏毅机器学习笔记——反向传播算法
小陈phd
机器学习机器学习算法神经网络
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
- 2018-11-21晨间日记
梨筱草
今天是什么日子起床:6:23就寝:10:42天气:微雨心情:好纪念日:任务清单昨日完成的任务,最重要的三件事:改进:口语习惯养成:走路周目标·完成进度完成学习·信息·阅读完成健康·饮食·锻炼完成人际·家人·朋友好工作·思考意义?顺其自然最美好的三件事1.天很冷,穿的很暖和2.万事顺心3.还会思考,愿意进步思考·创意·未来改变发生在哪一刻
- 2018-11-21 前景理论:决策依赖于参考点
自践不息的喵喵大猫
今天实在没时间写作业了,摘录了最近学习的陆蓉的《行为金融学》,有一定的收获。虽然有很多内容以前知道,但是经过讲解,还是有很多新的认识。现摘录一小段内容供大家感受一下:前景理论:决策依赖于参考点那实际的决策选择是什么呢?在所有研究实际决策的理论中,行为金融学家卡尼曼和特沃斯基提出的前景理论(ProspectTheory)最有名,并因此获得了2002年的诺贝尔经济学奖。前景理论最著名的观点是,决策依赖
- 如何开发针对不平衡分类的成本敏感神经网络 python
背包客研究
不平衡学习分类神经网络python
如何开发针对不平衡分类的成本敏感神经网络深度学习神经网络是一类灵活的机器学习算法,可以在各种问题上表现良好。神经网络使用误差反向传播算法进行训练,该算法涉及计算模型在训练数据集上产生的误差,并根据这些误差的比例更新模型权重。这种训练方法的局限性在于,每个类别的示例都被视为相同,对于不平衡的数据集,这意味着模型对一个类别的适应性要强得多,而对另一个类别的适应性则弱得多。反向传播算法可以更新,以根据类
- pytorch中的nn.MSELoss()均方误差损失函数
AndrewPerfect
深度学习python基础pytorch基础pytorch人工智能python
一、nn.MSELoss()是PyTorch中的一个损失函数,用于计算均方误差损失。均方误差损失函数通常用于回归问题中,它的作用是计算目标值和模型预测值之间的平方差的平均值。具体来说,nn.MSELoss()函数的输入是两个张量,即模型的真实值和预测值,输出是一个标量,表示两个张量之间的均方误差。在训练神经网络时,通常将该损失函数作为优化器的目标函数,通过反向传播算法来更新模型的参数,以最小化均方
- 2018-11-21
明月南
今天我看时发现一个提醒,原来是我昨日没有日更,我有一点疑惑,我昨日不是更了一篇文吗?难道是字数太少,构不上一篇。也是,我只是用几个字写了一句话,再放上一张图也算过了。有时候,真的不知道写什么,我挺佩服那些文笔好的人的,一句话,一段诗,一个感想,就可以写出一篇优美的散文,一篇故事。而我却是词穷。看了好多的文,都说要多多练习,正如林黛玉说的,熟读唐诗三百首,不会吟诗也会吟。看来,还要多多的练习,多多的
- 反向传播算法:深度神经网络学习的核心机制
2402_85758936
算法dnn学习
引言深度神经网络(DNNs)之所以在众多领域取得革命性的成功,很大程度上归功于其强大的学习能力,而这一能力的核心是反向传播算法(Backpropagation)。这是一种高效的监督学习算法,用于训练多层前馈神经网络。本文将深入探讨反向传播算法的工作原理及其在DNN中的应用。反向传播算法的基本概念反向传播算法结合了梯度下降优化和链式法则,通过计算损失函数关于网络参数的梯度来更新网络权重。1.损失函数
- cnn卷积神经网络反向传播,卷积神经网络维度变化
阳阳2013哈哈
PHPcnn机器学习深度学习神经网络
卷积神经网络是如何反向调整参数的?卷积神经网络反向传播和bp有什么区别如何理解神经网络里面的反向传播算法反向传播算法(Backpropagation)是目前用来训练人工神经网络(ArtificialNeuralNetwork,ANN)的最常用且最有效的算法。其主要思想是:(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;(2)由于ANN的输出结
- Spark MLlib模型训练—分类算法Multilayer Perceptron Classifier
猫猫姐
Spark实战spark-mlspark机器学习
SparkMLlib模型训练—分类算法MultilayerPerceptronClassifierMultilayerPerceptronClassifier(多层感知器分类器,简称MLP)是SparkMLlib中用于分类任务的神经网络模型。MLP是一种前馈神经网络(FeedforwardNeuralNetwork),其架构由输入层、隐藏层和输出层组成。MLP通过反向传播算法(Backpropag
- 深度学习——梯度消失、梯度爆炸
小羊头发长
深度学习机器学习人工智能
本文参考:深度学习之3——梯度爆炸与梯度消失梯度消失和梯度爆炸的根源:深度神经网络结构、反向传播算法目前优化神经网络的方法都是基于反向传播的思想,即根据损失函数计算的误差通过反向传播的方式,指导深度网络权值的更新。为什么神经网络优化用到梯度下降的优化方法?深度网络是由许多非线性层(带有激活函数)堆叠而成,每一层非线性层可以视为一个非线性函数f(x),因此整个深度网络可以视为一个复合的非线性多元函数
- 神经网络算法:神经网络反向传播法代码
独木人生
人工智能神经网络算法python
下面是一个使用Python实现的神经网络反向传播算法的代码示例:importnumpyasnpclassNeuralNetwork:def__init__(self,num_inputs,num_hidden,num_outputs):self.num_inputs=num_inputsself.num_hidden=num_hiddenself.num_outputs=num_outputsse
- 2018-11-21晨间日记
飞翔_8019
今天是什么日子起床:5:06就寝:10:30天气:小雨转晴心情:很好纪念日:无任务清单昨日完成的任务,最重要的三件事:改进:多读书,多学习习惯养成:每天读书的习惯周目标·完成进度读完一本书学习·信息·阅读学习理财健康·饮食·锻炼养成每天吃五种蔬菜水果的习惯每天跑步的习惯人际·家人·朋友朋友在我家吃饭工作·思考提高效率最美好的三件事1.运动2.读书3.日更思考·创意·未来学习写作。学习理财,开启钱生
- 【天幕系列 03】深度学习领域的最新前沿:2024年的关键突破与趋势
浅夏的猫
随笔热门话题java大数据人工智能深度学习ai
文章目录导言01深度学习的基本原理和算法1.1神经网络(NeuralNetworks)1.2前馈神经网络(FeedforwardNeuralNetwork)1.3反向传播算法(Backpropagation)1.4激活函数(ActivationFunction)1.5深度神经网络(DeepNeuralNetworks)1.7优化算法1.8正则化1.9批量训练(BatchTraining)02深度学
- 神经网络权重初始化
诸神缄默不语
人工智能学习笔记神经网络人工智能深度学习权重初始化参数初始化Xavier初始化Glorot初始化
诸神缄默不语-个人CSDN博文目录(如果只想看代码,请直接跳到“方法”一节,开头我介绍我的常用方法,后面介绍具体的各种方案)神经网络通过多层神经元相互连接构成,而这些连接的强度就是通过权重(Weight)来表征的。权重是可训练的参数,意味着它们会在训练过程中根据反向传播算法自动调整,以最小化网络的损失函数。每个神经元接收到的输入信号会与相应的权重相乘,然后所有这些乘积会被累加在一起,最后可能还会加
- 深度学习-图解反向传播算法
AI_王布斯
深度学习算法神经网络深度学习
什么是正向传播网络?前一层的输出作为后一层的输入的逻辑结构,每一层神经元仅与下一层的神经元全连接,通过增加神经网络的层数虽然可为其提供更大的灵活性,让网络具有更强的表征能力,也就是说,能解决的问题更多,但随之而来的数量庞大的网络参数的训练,一直是制约多层神经网络发展的一个重要瓶颈。什么是反向传播?反向传播(Backpropagationalgorithm)全称“误差反向传播”,是在深度神经网络中,
- 深度学习之反向传播算法的直观理解
Stark0x01
深度学习之反向传播算法的直观理解如何直观地解释backpropagation算法?https://www.zhihu.com/question/27239198BackPropagation算法是多层神经网络的训练中举足轻重的算法。简单的理解,它的确就是复合函数的链式法则,但其在实际运算中的意义比链式法则要大的多。要回答题主这个问题“如何直观的解释backpropagation算法?”需要先直观理
- 深度学习之反向传播算法(backward())
Tomorrowave
人工智能深度学习算法人工智能
文章目录概念算法的思路概念反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)算法的思路多层神经网络的教学过程反向传播算法为了说明这一点使用如下图所示处理具有两个输入和一
- 深度学习基础 叁:反向传播算法
白拾Official
#深度学习神经网络算法网络深度学习人工智能
注:封面画师:新雨林-触站说明本页面无手机端适配,强制缩放阅读。使用纯html格式,保存教学用ppt,添加了部分个人笔记。目录工作正常,可以跳转。反向传播这里对反向传播的讲解比较奇怪,可能比较适合初学者理解。想要通过严谨的数学推导理解反向传播的同学,可以搜索一下。反向传播算法反向传播算法什么是正向传播网络什么是反向传播反向传播算法为什么需要反向传播图解反向传播反向传播计算链式求导法则案例1:通过反
- 深度学习之反向传播算法
温柔了岁月.c
机器学习算法
反向传播算法数学公式算法代码结果算法中一些函数的区别数学公式算法代码这里用反向传播算法,计算y=w*x模型importnumpyasnpimportmatplotlib.pyplotasply#反向传播算法,需要使用pytorch框架,#这里导入pytorch框架,用torchimporttorch#用反向传播算法计算y=w*x模型x_data=[1.0,2.0,3.0,4.0]y_data=[2
- 2018-11-21跑步记录
刘先生的哲
20181121跑步记录气温21℃阴,有风今日计划完成情况今日计划跑程16km,实际耗时103′38″,平均配速6′28″,平均步频193,平均心率145,最大心率158,心率在目标区间占时约85%。本周第二次计划完成。心得体会从心率在目标区间占时比例来看,最近两次对心率的控制有所放松,调出心率波动曲线并与实际跑步实状关联分析后,发现基本是在10km后心率就容易出现突破区间的情况。存在的原因有:一
- 2018-11-21
婵婵的每一天都值得记录
影特别困特别累,吃完饭倒头就睡……睡起一觉突然发现忘了日更,闭着眼想着可以复活,但又一想前几天用过一次复活,怕是不到六天复活失败又将清零。爬起来迷迷糊糊有点凑数的写啊写。世界那么美妙,你却如此暴躁,这样不好不好。
- 前向传播算法 Forward propagation 与反向传播算法 Back propagation
仍然是提供的
虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解。因此特意先对深度学习中的相关基础概念做一下总结。先看看前向传播算法(Forwardpropagation)与反向传播算法(Backpropagation)。1.前向传播如图所示,这里讲得已经很清楚了,前向传播的思想比较简单。举个例子,假设上一层结点i,j,k,…等一些结点与本层的结点w有连接,那么结点w的值怎
- 2018-11-21
Jinling10
这几天风大,太阳还不错,中午饭后在小月河散步。组织合并的余震影响就快要到来了。理论上可以选择,听上去是一个不错的词。下午去医院,照例没有什么实质,只是挂号,约个B超,我已经对医院的套路比较清楚了。通常都要有检查,有了检查结果才有进一步的诊断。B超约在2周后,本来最快可以下周,然而貌似下周要出差。医院回来继续工作,晚上还有电话会议。然而似乎并无一个安静的书桌,可以让人静心做工作了。
- 2018-11-21第一题
额丶丶丶
效果图片发自App代码staticvoidMain(string[]args){inti;Console.WriteLine("请输入一个数字");inta=Convert.ToInt32(Console.ReadLine());for(i=0;i<=a;i++){if(i+(a-i)==a){Console.WriteLine("{0}+{1}={2}",i,a-i,a);}}Console.R
- 2018-11-21
不服输的苹果
我痛恨,我大叫,这不公的世道,这惹人的世俗。世人都爱轻易作出美好的蓝图赠予你。我不信,一刻都不信。好吧,我承认我怪诞可是那又如何。我眼睛所见的云和风听见的雨和阳光都是我的,最爱我的温柔的夜。你们要去追求的,去啊。你们的一生去追啊。可是又让身边的人受累。这种罪过还要犯几重,我不信。一点也不信,给自己造个壳子,藏起来。失去就失去,都不曾有过。那再见最后的善良。总以最大的恶意揣测别人,真是棒极了。
- 2018-11-21
无梦相赠_d83b
发现一种特别舒服的关系,并不总是你一言我一语的秒回,有时候愿意把我看到的东西一股脑的发给你,不用组织好精简的语言啰哩啰嗦,也不怕有哪句话说错发完不会等着回复,因为我知道你总会看见,图片发自App是信任和任何时候都不会被丢下的安全感。
- 2018-11-21 打卡第九天,服装设计师的态度很重要
励志的樱桃
追着女神的剧《你和我的倾城时光》,了解着自己喜爱的行业,真是一种极大的享受。虽说电视剧的剧情在介绍专业领域内容时没有那么专业,也会有些浮夸;但多多少少是能学到些东西的。林浅为成功设计安卡达的航空制服全力以赴,那种优秀服装设计师的职业精神值得学习。当安卡达负责人程峰参观爱达集团时,特意在林浅工作的时候进入她的办公室,想要看看她的工作状态。谁知林浅正为如何设计出满意的安卡达航空制服苦思冥想时,程峰突然
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓