- nlp遇到的问题
1.AttributeError:'CodeGenTokenizer'objecthasnoattribute'encoder'pipinstalltransformers==4.33.22.ImportError:Using`low_cpu_mem_usage=True`ora`device_map`requiresAccelerate:`pipinstallaccelerate`pipinst
- python 百度云api_Python使用百度API上传文件到百度网盘代码分享
weixin_39775577
python百度云api
#coding:UTF-8importurllibimporturllib2__author__='Administrator'fromposter.encodeimportmultipart_encodefromposter.streaminghttpimportregister_openersregister_openers()defupload(fileName):"""通过百度开发者API
- 第 1 部分 - 序列化
pythondjango
介绍本教程将介绍如何创建一个简单的在线代码高亮WebAPI。在此过程中,将介绍DjangoRESTFramework的各个组件,并让你全面了解它们是如何协同工作的。本教程内容较为深入,所以在开始之前,你可能需要准备一块饼干和一杯你最喜欢的饮料。如果你只是想快速了解内容,可以查看快速入门文档。注意:本教程的代码可在GitHub上的encode/rest-framework-tutorial仓库中找到
- odrive软件的版本
m0_55305757
stm32电机嵌入式硬件odrive
odrive软件的版本0.4.0通信方面引入一个fibre变复杂了(节点还是手工生成的),cpp程序开始变多了。(sensorless我看到变成独立文件了)pythontool开始使用pip安装形式。0.5.0开始支持spi的encoder,as5047之类0.5.1据说之后的版本controlloop开始变化0.5.2开始应该是大修改了//RequiredtouseOC4forADCtrigge
- buuctf新生赛(ACTF2020)
HfLllo
linux运维服务器
1.Upload:文件上传,phtml2.BackupFile:codesearch找备份文件,弱类型比较==(只要求值相等)3.Exec:网站;ls(linux列出当前目录有哪些文件和目录)网站;ls/(看根目录里有什么内容)查看文件:web;cat/file4.Include:php://filter/read=convert.base64-encode/resource=file.php,再
- 终端里的AI黑魔法:OpenCode深度体验与架构揭秘
许泽宇的技术分享
人工智能AICode
“你以为AI只能在网页上点点鼠标?不,真正的极客,AI要在终端里飞!”各位码农、终端党、AI爱好者们,今天我要带你们走进一个神秘的世界——OpenCode。这是一个让AI在你终端里“蹦迪”的神器。你还在用ChatGPT网页版复制粘贴代码?你还在羡慕ClaudeCode的智能补全?醒醒吧,OpenCode已经把AI搬进了终端,开源、可扩展、还不挑AI模型,关键是——它真的很酷!一、什么是OpenCo
- python学习记录14
彤银浦
学习python
1.字符串的编码和解码不同的计算机之间在信道中传输的信息本质上是二进制数据,因此当你有一串文本需要传输给另外一台电脑时,则需要将这串文本编译为二进制类型的数据。python中的二进制数据类型称为byte类型。将字符串的str类型转变为byte类型称为字符串的编码,将byte类型转变为str类型称为字符串的解码。字符串的编码用到的是encode的方法,语法格式为:string.encode(enco
- swift 对象转Json
泓博
swift
在Swift中将对象转换为JSON可以通过以下方法实现:使用Codable协议Swift的Codable协议(Encodable和Decodable的组合)是处理JSON编码和解码的推荐方式。structPerson:Codable{varname:Stringvarage:Int}letperson=Person(name:"John",age:30)letencoder=JSONEncoder
- 基于Transformer实现机器翻译
yyyyurina.
transformer机器翻译深度学习
目录一、前言1.1什么是Transformer?1.2Transfomer的基本结构1.2Transformer的重要组成部分1.2.1位置编码(PositionalEncode)1.2.2自注意力机制(Self-Attention)1.2.3多头注意力(Multi-HeadAttention)1.2.4位置感知前馈层(Position-wiseFFN)1.2.5残差连接与层归一化二、AutoDL
- python编码处理:unicode字节串转成中文 各种字符串举例说明
sdlcwangsong
python编码处理:unicode字节串转成中文各种字符串举例说明编码问题一直是很头痛的问题:当字符串是:'\u4e2d\u56fd'>>>s=['\u4e2d\u56fd','\u6e05\u534e\u5927\u5b66']>>>str=s[0].decode('unicode_escape')#.encode("EUC_KR")>>>printstr中国当字符串是:'东
- Logstash-Logback-Encoder 教程
孟元毓Pandora
Logstash-Logback-Encoder教程logstash-logback-encoderLogbackJSONencoderandappenders项目地址:https://gitcode.com/gh_mirrors/lo/logstash-logback-encoder本教程将引导您了解logstash-logback-encoder项目,这是一个用于生成JSON格式日志的Logb
- LSTM、GRU 与 Transformer网络模型参数计算
suixinm
lstmgrutransformer
参数计算公式对比模型类型参数计算公式关键组成部分LSTM4×(embed_dim×hidden_size+hidden_size²+hidden_size)4个门控结构GRU3×(embed_dim×hidden_size+hidden_size²+hidden_size)3个门控结构Transformer(Encoder)12×embed_dim²+9×embed_dim×ff_dim+14×e
- 预训练语言模型
lynnzon
语言模型人工智能自然语言处理
1.1Encoder-onlyPLMEncoder-only架构是Transformer的重要分支,专注于自然语言理解(NLU)任务,核心代表是BERT及其优化模型(RoBERTa、ALBERT)。其特点是:仅使用Encoder层:堆叠多层TransformerEncoder,捕捉文本双向语义。预训练任务:通过掩码语言模型(MLM)学习上下文依赖。应用场景:文本分类、实体识别、语义匹配等NLU任务
- 大模型学习 (Datawhale_Happy-LLM)笔记4: 预训练语言模型
lxltom
学习笔记语言模型人工智能bertgpt
大模型学习(Datawhale_Happy-LLM)笔记4:预训练语言模型一、概述本章按Encoder-Only、Encoder-Decoder、Decoder-Only的顺序来依次介绍Transformer时代的各个主流预训练模型,分别介绍三种核⼼的模型架构、每种主流模型选择的预训练任务及其独特优势,这也是目前所有主流LLM的模型基础。二、Encoder-onlyPLM代表:BERT及其优化版本
- 预训练语言模型之:Encoder-only PLM
抱抱宝
大模型语言模型人工智能自然语言处理
1.基础架构:TransformerEncoder所有模型的基石都是TransformerEncoder结构,其核心是自注意力机制:Attention(Q,K,V)=softmax(QKTdk)V\text{Attention}(Q,K,V)=\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)VAttention(Q,K,V)=softmax(dk
- windows使用mingw+cmake编译二维码生成库libqrencode
百口可乐__
WindowsGNU/Linux付费windowslinuxmicrosoft
libqrencode介绍LibqrencodeisafastandcompactlibraryforencodingdatainaQRCodesymbol,a2DsymbologythatcanbescannedbyhandyterminalssuchasamobilephonewithCCD.ThecapacityofQRCodeisupto7000digitsor4000characters
- QT生成二维码与linux下qrencode库编译
申卿凌
QT生成二维码与linux下qrencode库编译【下载地址】QT生成二维码与linux下qrencode库编译该项目为开发者提供了在Linux环境下使用QT框架生成二维码的完整解决方案。包含预编译的libqrencode库文件和示例源码,帮助开发者快速集成二维码生成功能。通过简单的配置,您可以在QT项目中轻松调用libqrencode库,实现高效的二维码编码与生成。无论是初学者还是经验丰富的开发
- 编码器技术解析:从基础原理到应用场景
亿只小灿灿
计算机基础日常小分享编码器
一、编码器的核心概念1.1定义与基本功能编码器(Encoder)是一种将信息从一种形式转换为另一种形式的设备或程序。其核心功能是通过特定的算法或机制,将输入信号(如模拟信号、数字数据、物理运动等)转换为便于存储、传输或处理的输出格式。在数字系统中,编码器的作用类似于"翻译官",例如:将文本字符转换为二进制代码(如ASCII编码)将视频图像压缩为特定格式(如H.264)将机械运动转换为电信号(如旋转
- 内存的代价:如何正确与 WASM 模块传值交互
EndingCoder
WebAssembly实战与前沿应用wasm交互性能优化主线程性能javascript
关键要点线性内存模型:WebAssembly(WASM)使用单一的线性内存块,供WASM和JavaScript(JS)共享数据。高效数据交换:通过指针和ArrayBuffer,WASM和JS可以高效传递数组、对象等复杂结构。字符串处理:使用TextEncoder和TextDecoder解决字符串编码问题,确保跨语言兼容性。内存管理:Rust的Drop机制与JS的垃圾回收(GC)需协调配合,防止内存
- Transformer 中 QKV 流向全解析(含注意力机制箭头图示)
Accelemate
transformer人工智能深度学习
QKV是什么?在Attention机制中,我们通过Query(查询)与一组Key-Value(键-值)对计算注意力权重,然后用这些权重对Value进行加权求和,从而输出当前时刻关注上下文的结果。Transformer中注意力模块分布Transformer结构中含有三种注意力机制,每个机制都会涉及Q、K、V的构建和使用:编码器自注意力(EncoderSelf-Attention)解码器自注意力(De
- 每次重启pycharm 都需要重新登录fitten code chat,比较困惑,还未找到原因!
一、简介FittenCode:是一款免费的基于AI的编程助手插件,其中还接入了Deepseek模型,支持多种开发环境(如VSCode、PyCharm等)和80多种主流编程语言,其主要作用是通过智能化手段提升开发效率。二、FittenCode插件安装1.打开Pycharm,在【file】-【settings】-【plugins】-搜索插件【fittencode】-【install】进行安装。2.安装
- swift结构体转字典方式
泓博
swift
在Swift中,将结构体转换为字典可以通过几种方法实现。以下是常见的实现方式:使用Codable协议结构体遵循Codable协议,利用JSONEncoder和JSONDecoder进行转换:structPerson:Codable{varname:Stringvarage:Int}letperson=Person(name:"Alice",age:30)letencoder=JSONEncoder
- windows编译exe时问题解决
老爸我爱你
java前端算法
1>------Buildstarted:Project:xxx,Configuration:Debugx64------1>Linking...1>libencoder.lib(mem.obj):errorLNK2005:CRYPTO_set_mem_functionsalreadydefinedinlibeay32.lib(mem.obj)1>libencoder.lib(mem.obj):e
- 机器学习数据预处理:标签编码LabelEncoder
数字化与智能化
人工智能机器学习机器学习标签编码LabelEncoder
一、什么是标签编码LabelEncoderLabelEncoder是scikit-learn库中的一个预处理工具,用于将分类变量转换为整数标签。它主要用于处理目标变量(也称为标签)或特征变量中的分类数据。假设我们有一组学生的成绩数据,其中一个特征是学生的等级(A、B、C、D、E)。我们可以使用LabelEncoder将这些等级转换为整数标签。LabelEncoder主要用于将分类变量转换为整数标签
- 【python实用小脚本-109】人脸识别系统实战:从基础实现到性能优化
Kyln.Wu
Pythonpython开发语言opencv
一、代码功能解析1.核心功能概述本代码实现了一个基于face_recognition库的人脸识别系统,能够从已知人脸库中识别出输入图像中的人物身份,主要功能包括:已知人脸特征编码存储未知图像人脸检测与编码人脸特征匹配与身份识别结果可视化展示2.关键模块深度解析(1)已知人脸编码模块defget_encoded_faces():encoded={}fordirpath,dnames,fnamesin
- 微信小程序传参过来了,但是数据没有获取到
菌菇汤
微信小程序小程序uniapp
使用本方法前,已经采用encodeURIComponent把拼接的参数编码之后,拼接在链接上,在接受的页面的onLoad生命周期,接收到参数之后,采用decodeURIComponent进行解码的操作,如果这个也不行,不是说不行,而是第一次跳转没有解析出来数据,也就是页面没有数据。需要第二次跳转才有数据。那么就是在微信小程序中,URL参数传递有以下限制:长度限制:URL过长会被截断编码问题:特殊字
- Transformer结构介绍
大写-凌祁
transformer深度学习人工智能
[编码器Encoder]←→[解码器Decoder]编码器:输入:源语言序列输出:每个词的上下文表示(embedding)解码器:输入:目标语言序列+编码器输出输出:下一个词的概率分布(目标句子生成)inputs->inputsEmbedding+PositionalEncoding->N*encoderoutput->outputsEmbedding+PositionalEncoding->N*
- 【深度学习pytorch-88】BERT
超华东算法王
DL-pytorch深度学习pytorchbert
BERT(BidirectionalEncoderRepresentationsfromTransformers)简介BERT是一种基于Transformer架构的预训练语言表示模型,旨在通过大规模无监督学习来提升下游自然语言处理(NLP)任务的效果。BERT由GoogleAI的研究人员于2018年提出,它在多个NLP任务上设立了新的最先进的性能基准。BERT的核心思想BERT的核心思想是通过预训
- 69 BERT预训练_BERT代码_by《李沐:动手学深度学习v2》pytorch版
醒了就刷牙
李沐动手学深度学习深度学习bertpytorch
系列文章目录文章目录系列文章目录BidirectionalEncoderRepresentationsfromTransformers(BERT)输入表示预训练任务掩蔽语言模型(MaskedLanguageModeling)下一句预测(NextSentencePrediction)整合代码小结练习BidirectionalEncoderRepresentationsfromTransformers
- agentformer论文阅读
ZHANG8023ZHEN
论文阅读
参考了这篇博文:https://zhuanlan.zhihu.com/p/512764984主要有这几个部分a.map_encoderi.对地图进行CNNb.ContextEncoderi.timeencoder–将时间信息用transformer和positionemb进行融合,加入到特征中ii.agent-awareattention–self和selfattentionother和other
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号