- opencv轮廓近似,模板匹配
富士达幸运星
opencv人工智能计算机视觉
在图像处理领域,轮廓近似和模板匹配是两种非常关键的技术,它们广泛应用于计算机视觉、图像分析和图像识别等多个方面。本文将详细介绍如何使用OpenCV库进行轮廓近似和模板匹配,并给出具体的代码示例。一、轮廓近似(ContourApproximation)轮廓近似是指将图像中的轮廓逼近成由直线段组成的多边形或其他简单形状,以减少轮廓的复杂度和数据量。OpenCV提供了cv2.approxPolyDP()
- 数字图像处理 - 形态学腐蚀
HelloZEX
数字图像处理C++图像处理opencv形态学处理
一、理论与概念讲解——从现象到本质1.1形态学概述形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构。而我们图像处理中指的形态学,往往表示的是数学形态学。下面一起来了解数学形态学的概念。数学形态学(Mathematicalmorphology)是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀和膨胀、
- 线性代数在卷积神经网络(CNN)中的体现
科学的N次方
人工智能线性代数cnn人工智能
案例:深度学习中的卷积神经网络(CNN)在图像识别领域,卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一个广泛应用深度学习模型,它在人脸识别、物体识别、医学图像分析等方面取得了显著成效。CNN中的核心操作——卷积,就是一个直接体现线性代数应用的例子。假设我们正在训练一个用于识别猫和狗的图像分类器,原始输入是一幅RGB彩色图片,可以将其视为一个高度、宽度和通道数(R
- 2020-04-04
奋斗中的小强
SAN:Scale-AwareNetworkforSemanticSegmentationofHigh-ResolutionAerialImages高分辨率航空图像具有广泛的应用,如军事探索和城市规划。语义分割是高分辨率航空图像分析中广泛使用的一种基本方法。然而,高分辨率航空影像地物具有尺度不一致的特征,这一特征往往会导致预测结果的不确定性。为了解决这个问题,我们提出了一个新的尺度感知模块(SAM
- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- DDE红外图像增强
烟雨_潇潇
一直忙于手上的工作,没有及时总结,今天抽几分钟时间,将最近DDE红外图像增强的试验结果分享下。具体的实现过程,会在后面的博文中进行详细的说明、论证。有车的照片没白天所拍照片,其余2张为晚上8点所拍照片,另因工作需要,先进行算法部分,两点校正和盲元填充放后面做,且手上探测器库存4年之久,光学镜头也不是特别好,所以图片中盲元较多。从图像分析,以图片中倒车的车为例,细节纹理非常明显,结果表明4x4的cl
- OpenCV中的边缘检测技术及实现
superdont
计算机视觉opencv人工智能计算机视觉python矩阵图像处理经验分享
介绍:边缘检测是计算机视觉中非常重要的技术之一。它用于有效地识别图像中的边缘和轮廓,对于图像分析和目标检测任务至关重要。OpenCV提供了多种边缘检测技术的实现,本博客将介绍其中的两种常用方法:Canny边缘检测和Sobel边缘检测。理论介绍:1.Canny边缘检测:Canny边缘检测是一种经典的边缘检测算法,它被广泛应用于图像处理领域。该方法结合了多个步骤,包括高斯滤波、计算梯度、非最大值抑制和
- 六、图像的几何变换
云峰天际
计算机视觉人工智能opencv人工智能计算机视觉
文章目录前言一、镜像变换二、缩放变换前言在计算机视觉中,图像几何变换是指对图像进行平移、旋转、缩放、仿射变换和镜像变换等操作,以改变图像的位置、尺寸、形状或视角,而不改变图像的内容。这些变换在图像处理、模式识别、机器人视觉、医学影像处理等领域具有广泛的应用。通过图像几何变换,可以实现图像的校正、配准、增强和重建等功能,为后续的图像分析和理解提供了重要的基础。一、镜像变换水平镜像(水平翻转)其原理是
- Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络
AI浩
高质量人类CV论文翻译深度学习人工智能计算机视觉
摘要在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积操作在捕获局部特征方面表现出色,而后者则通过利用自注意力机制实现了出色的全局上下文理解。然而,这两种架构在有效建模医学图像中的长距离依赖关系时都存在局限,这对于精确分割至关重要。受到Mamba架构的启发,该架构因其处理长序列和全局上下文信息的能力以及作为国家空间模型(SSM)的增强计算
- python 人脸检测器
laocooon523857886
计算机视觉opencv图像处理
importcv2#加载人脸检测器关键文件haarcascade_frontalface_default.xmlface_cascade=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')#读取图像分析图片ren4.pngimage=cv2.imread('ren4.png')gray=cv2.cvtColor(image,cv
- 课程大纲:图像处理中的矩阵计算
superdont
计算机视觉图像处理矩阵人工智能
课程名称:《图像处理中的矩阵计算》课程简介:图像处理中的矩阵计算是图像分析与处理的核心部分。本课程旨在教授学员如何应用线性代数中的矩阵计算,以实现各种图像处理技术。我们将通过强调实际应用和实践活动来确保学员能够理解和掌握这些概念。课程大纲:第1章:矩阵计算基础矩阵及其表示方式矩阵四则运算单位矩阵和逆矩阵矩阵的转置线性系统和矩阵的求解(高斯消元法)第2章:图像表示和颜色空间数字图像的矩阵表示灰度图像
- 基于拉普拉斯金字塔的高分辨率眼底图像视网膜血管实时分割matlab仿真
fpga和matlab
MATLAB板块2:图像-特征提取处理拉普拉斯金字塔高分辨率眼底图像视网膜血管实时分割matlab
目录1.拉普拉斯金字塔原理2.基于拉普拉斯金字塔的血管分割方法3.MATLAB程序3.实验结果与分析视网膜血管分割是眼底图像分析中的关键步骤,对于诊断视网膜病变等眼部疾病具有重要意义。本文提出了一种基于拉普拉斯金字塔的高分辨率眼底图像视网膜血管实时分割方法。该方法首先利用拉普拉斯金字塔对眼底图像进行多尺度分解,然后在不同尺度上提取血管特征,并通过融合多尺度信息实现血管的精确分割。眼底图像是诊断眼部
- Ps:统计
MediaTea
Ps菜单:文件/脚本/统计Scripts/Statistics统计Statistics脚本命令提供了一种高效的方法来处理和分析大量图像,使用户能够自动执行复杂的图像分析任务,并在多个图像间应用统计学方法。这个功能极大地扩展了Photoshop在科学研究、图像编辑和其他领域的应用潜力。◆◆◆使用方法与技巧相对于“将文件载入堆栈”脚本命令,“统计”脚本命令不仅可以将多个图像文件载入为同一文档中的不同图
- Coreline Soft x Incredibuild
Incredibuild
C++DevOpsc++devopswindows
关于CorelineSoftCorelineSoft是一家专注于先进医疗人工智能成像软件技术的上市公司,致力于提高疾病诊断的准确性和效率。Corelinesoft成立于2012年,总部位于韩国首尔,目前CorelineSoft业务已向全球范围内扩展,在德国法兰克福和美国乔治亚州亚特兰大设有办事处。CorelineSoft的核心旗舰产品是AVIEW,一款创新性的人工智能技术驱动的医疗图像分析软件。A
- OpenCV 笔记(19):霍夫直线检测
Java与Android技术栈
opencv笔记计算机视觉人工智能
1.霍夫空间和霍夫变换1.1霍夫空间霍夫空间(Houghspace)是一种用于图像分析的特征空间,用于描述图像中具有相同形状的线段或曲线。霍夫空间是指将图像空间中的点映射到参数空间后形成的空间。参数空间的维度由形状的描述参数的个数决定。例如,对于直线检测,参数空间的维度为2,其中一个维度表示直线的斜率,另一个维度表示直线的截距。对于圆检测,参数空间的维度为3,这三个参数分别是圆心坐标和圆的半径。霍
- 机器学习系列——(十九)层次聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在机器学习和数据挖掘领域,聚类算法是一种重要的无监督学习方法,它试图将数据集中的样本分组,使得同一组内的样本相似度高,不同组间的样本相似度低。层次聚类(HierarchicalClustering)是聚类算法中的一种,以其独特的层次分解方式,在各种应用场景中得到广泛应用,如生物信息学、图像分析、社交网络分析等。一、概述层次聚类算法主要分为两大类:凝聚的层次聚类(AgglomerativeHie
- 机器学习系列——(十七)聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在当今数据驱动的时代,机器学习已经成为了解锁数据潜能的关键技术之一。其中,聚类作为机器学习领域的一个重要分支,广泛应用于数据挖掘、模式识别、图像分析等多个领域。本文旨在深入探讨聚类技术的原理、类型及其应用,为读者提供一个全面而深入的了解。一、什么是聚类?聚类是一种无监督学习(UnsupervisedLearning)技术,它的目标是将相似的对象分组到一起,形成簇(Cluster)。与有监督学习
- 二值图像分析:轮廓形状逼近与拟合
stdcoutzrh
OpenCV与Qt轮廓逼近
二值图像分析:轮廓形状逼近与拟合1.二值图像轮廓逼近1.1轮廓逼近函数1.2轮廓逼近算法原理分析2.代码实践3.最小外接圆拟合4.最大内接圆拟合4.1点轮廓位置测试函数4.2获取轮廓最大内接圆1.二值图像轮廓逼近1.1轮廓逼近函数在[二值图像分析:二值图像轮廓提取],通过findContours()函数可以找到二值图像中的轮廓信息。对图像二值图像的每个轮廓,OpenCV提供了一个函数approxP
- 图像处理入门:OpenCV的基础用法解析
kadog
ByGPT图像处理opencv人工智能计算机视觉
图像处理入门:OpenCV的基础用法解析引言OpenCV的初步了解深入理解OpenCV:计算机视觉的开源解决方案什么是OpenCV?OpenCV的主要功能1.图像处理2.图像分析3.结构分析和形状描述4.动态分析5.三维重建6.机器学习7.目标检测OpenCV的应用场景OpenCV的安装基本图像操作图像的读取与显示图像的基本信息图像的保存图像处理技巧图像转换边缘检测特征检测与匹配引言OpenCV(
- Swin-Unet: Unet-like Pure Transformer forMedical Image Segmentation(用于医学图像分割的纯U型transformer)
我在努力学习分割(禁止说我水平差)
transformer深度学习人工智能1024程序员节
本文的翻译是参考的:[Transformer]Swin-Unet:Unet-likePureTransformerforMedicalImageSegmentation_unet-likepuretransformer-CSDN博客方便自己学习摘要:在过去的几年中,卷积神经网络(cnn)在医学图像分析方面取得了里程碑式的进展。特别是基于u型结构和跳跃连接的深度神经网络在各种医学图像任务中得到了广泛
- [AIGC] 计算机视觉(CV)技术的优势:
程序员三木
AIAIGC计算机视觉人工智能
计算机视觉(CV)技术的优势:高效性:计算机视觉技术可以快速地处理大量的图像和视频数据,比人类更高效。它可以在短时间内完成复杂的图像分析和对象识别任务。可靠性:相对于人类,计算机视觉技术可以提供更加准确和一致的结果。它可以消除人为因素的干扰,从而提高数据处理和分析的可靠性。自动化:计算机视觉技术可以实现自动化的图像处理和分析,无需人工干预。这可以大幅度提高工作效率,并减少人力成本。大规模处理:计算
- OpenCV4图像处理--二值图像联通组件扫描
Mzcc_bbms
OPENCV
联通组件扫描图像联通组件标记概念扫描联通组件的常见算法思考图像联通组件标记概念图像联通组件(CCL)四领域与八领域扫描联通组件的常见算法概念联通组件标记算法(connectedcomponentlabelingalgorithm)是图像分析中最常用的算法之一,算法的实质是扫描二值图像的每个像素点,对于像素值相同的而且相互连通分为相同的组(group),最终得到图像中所有的像素连通组件。扫描的方式可
- 小目标识别方法
LittroInno
人工智能目标识别
小目标识别是计算机视觉和人工智能领域中的一个重要研究方向,主要关注于如何有效地从图像或视频中识别尺寸较小、分辨率低的目标。这一任务在军事侦察、遥感图像分析、无人机监控、医学成像等多个领域有着广泛的应用。随着深度学习技术的发展,小目标识别的研究也取得了显著的进步。小目标识别面临的挑战主要包括目标尺寸小、易受背景干扰、目标特征不明显等问题。为了解决这些问题,研究者们提出了多种基于人工智能的方法,尤其是
- 数字图像处理 阮秋琦 期末复习 #1 绪论及正交变换
11egativ1ty
数字图像处理学计算机视觉人工智能
考试范围:第三章图像处理中的正交变换第四章图像增强第五章图像编码第六章图像复原第八章图像分析绪论图像是一种数据结构,笼统来说是一个二维矩阵,每一个点的信息共同组成了视觉平面数字图像处理的方法根据上文,数字图像处理的第一种方案是空域法,因为它们是在图像的空间域(spatialdomain)中操作的。空域是指图像的像素空间,也就是图像中每个像素的位置和像素值的空间布局。因此,空域法是直接在图像的原始表
- OpenCV简介、导入及图像处理基础方法讲解(图文解释 附源码)
showswoller
数据分析与可视化计算机视觉opencv图像处理计算机视觉人工智能python
需要源码和图片集请点赞关注收藏后评论区留言私信~~~一、OpenCV简介在计算机视觉项目的开发中,OpenCV作为较大众的开源库,拥有了丰富的常用图像处理函数库,采用C/C++语言编写,可以运行在Linux/Windows/Mac等操作系统上,能够快速的实现一些图像处理和识别的任务OpenCV还提供了Java、Python、cuda等的使用接口、机器学习的基础算法调用,从而使得图像处理和图像分析变
- 深度学习实验-3d医学图像分割
桶的奇妙冒险
深度学习3d人工智能
实验四基于nnU-Net模型的3D医学图像分割实验一、实验介绍腹部多器官分割一直是医学图像分析领域最活跃的研究领域之一,其作为一项基础技术,在支持疾病诊断,治疗规划等计算机辅助技术发挥着重要作用。近年来,基于深度学习的方法在该领域中获得了巨大成功。本实验数据集为多模态腹部分割数据集(AMOS),一个大规模,多样性的,收集自真实临床场景下的腹部多器官分割基准数据。本实验在百度飞桨平台上采用nnU-N
- 图像的拉普拉斯变换实现
SimpleLearing
opencv人工智能计算机视觉
拉普拉斯变换1.简介拉普拉斯变换是一种用于增强图像中的高频细节的图像处理操作。它对图像进行二阶微分,强调了图像中的边缘和细节信息。在拉普拉斯变换后的图像中,边缘通常会显得更加清晰,从而有助于图像分析和特征提取。2.原理拉普拉斯变换的原理是通过对图像进行二阶微分来突出图像中的高频细节。它可以使用卷积操作来实现,通常使用拉普拉斯核(3x3矩阵)进行卷积。具体而言,对于灰度图像,拉普拉斯变换的表达式为:
- 韶关一高层住宅突发火灾 富维烟火识别防止悲剧发生
北京富维图像5369
科技人工智能
近日,韶关市一高层住宅楼突发火灾,幸亏及时得到控制,未造成重大伤亡。这一事件再次提醒我们,高层建筑的火灾安全不容忽视。针对这一问题,北京富维图像公司的FIS智能图像识别系统显得尤为重要。FIS系统利用已部署的监控相机,通过先进的图像分析技术,可以实时监测和识别烟雾和明火。一旦检测到火灾迹象,系统会立即发出警报,使得居民和消防人员能迅速做出反应,有效避免悲剧的发生。这一系统在国内的评价极高,特别是在
- 上海黄浦区中山东二路一建筑发生火灾 富维图像烟火识别助力安全
北京富维图像5369
科技人工智能
近日,上海黄浦区中山东二路一幢建筑发生火灾,所幸未造成重大伤亡。这一事件再次提醒我们,城市中的火灾安全不容忽视。为此,北京富维图像公司推出的FIS智能图像识别系统成为了这一问题的关键解决方案。FIS系统通过已安装的监控相机,运用先进的图像分析技术,能够实时监测烟雾或明火的出现。一旦发现火灾征兆,系统将立即发出警报,使得相关人员能迅速采取行动,有效防止火势蔓延。通过测评发现产品的优势。烟火识别系统的
- 分段息肉数据库Kvasir-SEG介绍和下载
前网易架构师-高司机
深度学习人工智能深度学习kvasir-seg胃肠道息肉
Kvasir-SEGKvasir-SEG是胃肠道息肉图像和相应分割掩模的开放访问数据集,由医生手动注释,然后由经验丰富的胃肠病学家验证。翻译过来是逐像素图像分割,它是医学图像分析中一项要求很高的任务。很难找到具有相应分割掩模的带注释的医学图像。在这里,我们介绍Kvasir-SEG。它是胃肠道息肉图像和相应分割掩模的开放访问数据集,由经验丰富的胃肠病学家手动注释和验证。这项工作对于研究人员将来重现结
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓