多元统计分析复习整理

样本几何

  • 随机向量的均值和协方差矩阵


    多元统计分析复习整理_第1张图片

  • 单变量样本、均值向量、偏差向量的几何表示 p91*
    均值向量、偏差向量是定义在样本个数维度空间的。偏差向量的平方和(自身内积、模)除以样本个数是样本方差


    多元统计分析复习整理_第2张图片
  • 多变量样本之间的协方差、样本相关系数
    两个偏差向量的内积就是样本离差阵,除以样本个数就是样本协方差


  • 向量之间距离
    使用欧氏距离的话要求向量各分量之间独立且方差相等,对其进行拓展,引入马氏距离 p23*。马氏距离考虑了各变量方差不同,变量之间存在相关性。其处理方法分别是伸缩变换和旋转变换。

多元正态分布

多元统计分析复习整理_第3张图片
  • 单总体线性变换


  • 多总体线性组合(样本模型)


    多元统计分析复习整理_第4张图片
  • 特别地(均值向量正态分布)


    多元统计分析复习整理_第5张图片
  • 更一般地(两个线性组合之间的协方差)


    多元统计分析复习整理_第6张图片

    因为系数是平方,所以方差还是相加
  • 特别地,大样本下,中心极限,可用样本均值代替期望;可用样本协方差和矩阵代替上述协方差矩阵


    多元统计分析复习整理_第7张图片
  • 条件分布


    多元统计分析复习整理_第8张图片
  • 变量独立性分解


    多元统计分析复习整理_第9张图片

矩阵多元正态分布

  • 之前考虑的都是随机向量的期望,协方差,下面考虑随机矩阵的期望与协方差


    多元统计分析复习整理_第10张图片

    其中正态的下标表示矩阵行列,而不是np;矩阵期望就是对矩阵每一个元素求期望;矩阵协方差需要把矩阵拉直成向量,即一列接一列,再按照标准的向量形式求协方差;或者一步到位:将矩阵先拉直,再按照向量的形式处理

  • 矩阵拉直和先转置再拉直,期望和协方差之间的关系


    多元统计分析复习整理_第11张图片


  • 利用上述性质


  • 特别地,来自同一个总体的独立同分布的样本(向量)构成的矩阵
    每一行是一个样本向量


    多元统计分析复习整理_第12张图片
  • 转置后的样本矩阵


    多元统计分析复习整理_第13张图片

    多元统计分析复习整理_第14张图片
  • 上述样本矩阵服从矩阵正态分布


    多元统计分析复习整理_第15张图片

    其中两个向量的Keronecker积可以简写成向量点乘形式。一个样本矩阵到底是那种形式根据矩阵正态的下标判断

多元正态分布

Wishart分布

  • 就是n个零均值独立同分布的随机向量乘积矩阵之和(样本离差阵),类比卡方分布(n个零均值标准正态独立同分布的随机变量平方之和)


    多元统计分析复习整理_第16张图片

  • 性质

  • 叠加性
    本质是样本的叠加

T^2分布

  • 参考t分布


    多元统计分析复习整理_第17张图片

    其中乘以n是Wishart矩阵除以自由度带来的,Wishart矩阵的自由度也是T^2的自由度。

  • T^2具体的分布形式


    多元统计分析复习整理_第18张图片

    多元统计分析复习整理_第19张图片
  • 特别地,样本均值和样本离差阵


    其中n开根号是分配给样本均值,使得其协方差与样本的协方差一致;n-1是样本离差阵的自由度,对应定义中的n

  • 或者
    按照样本均值的协方差来定义T2。其中S是已经除过自由度(n-1)的Wishart矩阵(S本身并不服从Wishart分布),为了与样本均值的协方差一致,需要除以n。这样理解的话可以将T2看作是样本均值到给定点的马氏距离。

似然比检验

  • 似然函数和最大似然估计
  • 因为样本是独立同分布的,因此n个样本的联合概率密度函数是每个样本分布直接相乘。如果已经有了观测数据,带入样本联合概率密度函数,则变量就只剩下了模型参数,求此时样本联合密度分布的最大值,得到的就是模型参数的极大似然估计

    其中协方差矩阵是有偏估计量

  • 似然比检验
    对于似然函数某个参数的假设,在假设的约束下求似然函数的最大值;接着利用无约束的似然函数最大值,两者比值就是似然比。如果似然比偏小,假设被拒绝

假设检验问题

  • 单总体均值检验
    假设一个向量,判断均值向量是否与之相等

  • 总体协方差已知
    构造卡方分布


    多元统计分析复习整理_第20张图片
  • 总体协方差未知
    构造T^2统计量。

  • 两个总体的均值比较检验(协方差相同)P217*
    零假设:两个总体均值向量相等

  • 总体协方差已知



    多元统计分析复习整理_第21张图片
  • 总体协方差未知
    根据两种样本一起估计协方差阵,比重按照自由度比重分配


    多元统计分析复习整理_第22张图片

    样本离差阵可以直接相加,自由度为(m+n-2)

多重比较

多重比较是为了确定具体哪个分量不等。当均值的零假设被拒,接着使用多重比较。因为多重比较每一个假设都是标量假设,因此统计量选择的是t,考虑的分布也是t分布,而不是T^2。t分布是双边分布,置信水平需要除以2

多元统计分析复习整理_第23张图片

proof


多元统计分析复习整理_第24张图片
  • 单总体均值多重比较
  • 均值向量各元素全等;备择假设:均值向量各元素不全相等
    利用C矩阵,把下面的每一个元素减去第一个元素,将原问题转化为假设均值向量为0
  • 均值向量每个元素都有各自的零假设


    多元统计分析复习整理_第25张图片

    Bonferroni不等式方法


    多元统计分析复习整理_第26张图片

多元线性模型

多元统计分析复习整理_第27张图片
多元统计分析复习整理_第28张图片

注意X是已知的常数矩阵,不是变量

  • 根据误差矩阵分布得到观测矩阵的分布


    多元统计分析复习整理_第29张图片
多元统计分析复习整理_第30张图片
多元统计分析复习整理_第31张图片
  • 列满秩时参数满足的分布


    多元统计分析复习整理_第32张图片
  • 假设检验

  • 似然函数


    多元统计分析复习整理_第33张图片
  • 检验问题1


    多元统计分析复习整理_第34张图片
  • 检验问题2


你可能感兴趣的:(多元统计分析复习整理)