- 降维算法:主成分分析
一个人在码代码的章鱼
数学建模机器学习概率论
主成分分析一种常用的数据分析技术,主要用于数据降维,在众多领域如统计学、机器学习、信号处理等都有广泛应用。主成分分析是一种通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量(即主成分)的方法。这些主成分按照方差从大到小排列,方差越大,包含的原始数据信息越多。通常会选取前几个方差较大的主成分,以达到在尽量保留原始数据信息的前提下降低数据维度的目的。它通过将多个指标转换为少数几个主成分,
- 2017-SIGGRAPH-Google,MIT-(HDRNet)Deep Bilateral Learning for Real-Time Image Enhancements
WX Chen
HDR技术深度学习神经网络机器学习
双边网格本质上是一个可以保存边缘信息的3维的数据结构。对于一张2维图片,在2维空间中增加了一维代表像素的强度slice操作(上采样)BilateralGuidedUpsampling这篇文章用双边网格实现图像的操作算子的加速。算法的核心思想是将一幅高分辨率的图像通过下采样转换成一个双边网格,在双边网格中每个格子就是一个图像的仿射变换算子,它的原理是在空间与值域相近的区域内,相似输入图像的亮度经算子
- MoviePy视频编辑和处理Python库的版本问题解决:No module named ‘moviepy.editor‘
封步宇AIGC
文字音频视频自动化工具python音视频ffmpeg人工智能
MoviePy是一个强大的Python库,用于视频编辑和处理。它支持多种基本操作,如视频剪切、拼接、插入标题,以及更高级的视频合成(非线性编辑)、视频处理和自定义特效创建。MoviePy能够读写包括GIF在内的常见音频和视频格式,并且兼容Windows、Mac和Linux操作系统,支持Python2.7和3.x版本MoviePy基于ffmpeg和ImageMagick,提供了易于使用的API,能够
- 傅里叶变换在语音识别中的关键作用
从零开始学习人工智能
语音识别人工智能
在语音识别中,傅里叶变换起着至关重要的作用,主要体现在以下几个方面:一、时域到频域的转换语音信号的特点语音信号是一种时域信号,它随时间变化。例如,当我们说话时,声带的振动产生声波,这些声波在空气中传播,其振幅随时间不断变化。这种时域信号包含了丰富的信息,如音调、音色等,但这些信息在时域中并不是很容易直接提取。傅里叶变换能够将时域信号转换为频域信号。在频域中,语音信号被分解为不同频率成分的组合。以一
- 材料力学仿真软件:SAMCEF_(9).动态分析
kkchenjj
材料力学仿真材料力学开发语言性能优化仿真模拟数据库
动态分析动态分析是材料力学仿真软件中非常重要的一部分,用于模拟结构在时间域内的响应。在SAMCEF中,动态分析可以分为线性动态分析和非线性动态分析。线性动态分析主要用于处理线性系统,如模态分析和频域分析,而非线性动态分析则用于处理复杂的非线性系统,如瞬态动力学分析。本节将详细介绍动态分析的基本原理和具体操作步骤,包括模态分析、频域分析和瞬态动力学分析。模态分析模态分析是一种线性动态分析方法,用于确
- 差分进化算法(Differential evolution,DE)(附详细注释的Python代码)
XijueJa
算法python开发语言
概念与基本原理差分进化算法(DifferentialEvolution,简称DE)是一种基于种群的随机优化算法,由Storm和Price在1995年提出。它主要应用于解决非线性、非凸、连续和离散的优化问题。DE算法以其简单性、鲁棒性和高效性而受到广泛关注。差分进化算法的基本思想是通过模拟自然进化过程中的遗传和变异机制来寻找问题的最优解,类似于遗传算法。通过变异、交叉与选择,使得初始化的种群不断朝最
- 常用拉普拉斯变换及其性质和证明
爱代码的小黄人
MATLABmatlab拉普拉斯变换
1.基本函数的拉普拉斯变换原函数f(t)f(t)f(t)拉普拉斯变换F(s)F(s)F(s)定义域1111s\frac{1}{s}s1s>0s>0s>0ttt1s2\frac{1}{s^2}s21s>0s>0s>0tn(n为整数)t^n\(n\text{为整数})tn(n为整数)n!sn+1\frac{n!}{s^{n+1}}sn+1n!s>0s>0s>0eate^{at}eat1s−a\frac
- QT 使用OpenGL显示并查看点云图
_DJ
Qt-demoqt开发语言
文章目录效果图概述功能点代码分析读取点云文件着色器图形绘制图形变换最小包围盒伪颜色效果图概述OpenglWidget继承自QOpenGLWidget,QOpenGLFunctions,它具有OpenGL的功能,并且可以绘制OpenGL图形MinimumBoundBox类用于计算点云的最小包围盒(轴对齐包围盒,AABB),可以帮助确定视图的缩放级别,或者在用户进行平移和旋转操作时保持点云在视图内这两
- matlab代码实现了对一幅沥青路面图像(可替换为其他图像)的处理,包括图像的读取、预处理(灰度化、对比度增强、低帽变换、滤波去噪等)
pk_xz123456
MATLAB算法matlab开发语言
%清除工作区和命令窗口clear;clc;closeall;%读取图像image_path='7876.jpg_wh860.jpg';%请将此路径替换为你的沥青路面图像的实际路径image1=imread(image_path);%图像预处理%1.灰度化image
- PyTorch使用教程- Tensor包
Loving_enjoy
论文pytorch人工智能
###PyTorch使用教程-Tensor包PyTorch是一个流行的深度学习框架,它提供了一个易于使用的API来创建和操作张量(Tensors)。张量是一个多维数组,类似于NumPy中的ndarray,但它是基于GPU的,支持自动求导。本文将详细介绍PyTorch中的Tensor包,包括张量的创建、运算、形状变换、索引与切片、以及重要的张量处理方式。####一、张量的创建在PyTorch中,可以
- 通俗易懂之广义加性模型GAM时序预测(pyGAM)
智识小站
可解释机器学习python
广义加性模型(GAM)在时间序列预测中是一种强大的工具,能够捕捉数据中的非线性趋势和复杂模式。本文将详细介绍如何在Python中实现广义加性模型进行时间序列预测,包括所需的库、数据预处理、模型构建、训练以及评估。如果这篇文章对你有一点点的帮助,欢迎点赞、关注、收藏、转发、评论哦!我也会在微信公众号“智识小站”坚持分享更多内容,以期记录成长、普及技术、造福后来者!一、GAM在时间序列中的应用时间序列
- 人工智能学习路线全链路解析
power-辰南
大模型算法实战工程人工智能学习机器学习
一、基础准备阶段(预计2-3个月)(一)数学知识巩固与深化线性代数(约1个月):矩阵基础:回顾矩阵的定义、表示方法、矩阵的基本运算(加法、减法、乘法),理解矩阵乘法不满足交换律等特性,通过练习题加深对运算规则的掌握,例如计算简单的矩阵乘法式子、求矩阵的转置等。向量空间与线性变换:学习向量空间的概念,包括向量的线性组合、线性相关与线性无关,掌握线性变换的定义、几何意义以及如何用矩阵表示线性变换,借助
- 通俗易懂之样条函数的原理、计算、案例、python实现
智识小站
可解释机器学习python算法
理解样条函数(SplineFunctions)是掌握广义加性模型(GAMs)及其他非线性回归技术的关键。样条函数通过分段多项式的形式,在不同区间内灵活地拟合数据,从而捕捉复杂的非线性关系。本文将更为详细地讲解样条函数的原理、具体示例以及在Python中的实现方法。如果这篇文章对你有一点点的帮助,欢迎点赞、关注、收藏、转发、评论哦!我也会在微信公众号“智识小站”坚持分享更多内容,以期记录成长、普及技
- MHA实现
谁怕平生太急
算法基础模型基础
(1)关键点说明:多头注意力机制:将输入分成多个头,每个头独立计算注意力(2)维度变换:输入:(batch_size,sequence_length,embedding_dim)多头处理:(batch_size,num_heads,sequence_length,dim_per_head)后面两项用于Q、K的计算维度变换的核心是用view和permute来进行(3)注意力计算:Q×K^T得到注意力
- 用java 实现 Zigzag Conversion Z 字形变换(leetCode 算法)
用心去追梦
算法javaleetcode
Z字形变换(ZigzagConversion)是LeetCode上一个有趣的字符串操作问题。题目要求我们把给定的字符串按照Z字形排列,并且按行读取这些字符,最后返回重新排列后的字符串。例如,输入字符串“PAYPALISHIRING”和行数numRows=3时,Z字形排列如下:PAHNAPLSIIGYIR然后按行读取得到的结果字符串为“PAHNAPLSIIGYIR”。下面是用Java实现这个算法的方
- 计算机网络破译密码的题目,密码习题及部分参考答案.doc
耿礼勇
计算机网络破译密码的题目
一、密码学概述部分:1、什么是密码体制的五元组。五元组(M,C,K,E,D)构成密码体制模型,M代表明文空间;C代表密文空间;K代表密钥空间;E代表加密算法;D代表解密算法2、简述口令和密码的区别。密码:按特定法则编成,用以对通信双方的信息进行明、密变换的符号。换而言之,密码是隐蔽了真实内容的符号序列。就是把用公开的、标准的信息编码表示的信息通过一种变换手段,将其变为除通信双方以外其他人所不能读懂
- 数据增强方法及其工具
cxr828
大数据
数据增强(DataAugmentation)是指在训练深度学习模型时,通过对现有数据进行一系列变换,从而生成新的样本。数据增强有助于增加数据的多样性,减少过拟合,提升模型的泛化能力,尤其是在数据量有限的情况下。数据增强可以应用于图像、文本、音频等多种类型的数据。以下是一些常见的、简单易行的图像数据增强方法及其具体实现步骤,这些方法也可以广泛应用于目标检测、图像分类、图像分割等任务。一、图像数据增强
- 基于SIFT特征提取和模板匹配的车标识别算法MATLAB仿真(含MATLAB代码)
爱学习的通信人
图像处理毕业设计信号处理算法matlab开发语言
摘要本文介绍了一种基于尺度不变特征变换(SIFT)特征提取和模板匹配的车标识别方法,并通过MATLAB进行仿真。该方法利用SIFT特征的尺度和旋转不变性,提高车标识别的准确性和鲁棒性,适用于各种尺寸和方向的车标图像。仿真结果展示了该方法在实际应用中的有效性。关键词:车标识别,SIFT特征提取,模板匹配,MATLAB仿真1.引言车标识别在车辆检测、智能交通系统和安全监控中具有重要应用。准确识别车辆品
- PCL点云处理算法汇总(C++长期更新低价精品版)
点云侠'
点云学习算法c++开发语言计算机视觉
可笑,我当然知道是抄袭的啊,还用你提醒?要不是你们审核不作为,我能抄这么明目张胆???目录一、点云滤波1、常用滤波器2、采样滤波3、裁剪滤波二、KD树与八叉树1、KD树2、八叉树三、点云配准粗配准精配准对应关系配准精度坐标转换刚体运动变换四、点云拟合分割1、RANSAC2、其他几何分割五、三维重建六、特征点与特征描述1、点云的属性2、关键点提取3、特征描述子七、基础函数1、common模块2、其他
- 快速傅里叶变换
华东算法王(原聪明的小孩子
小孩哥总结MIT线性代数线性代数矩阵
快速傅里叶变换(FFT)快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT)和其逆变换。傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像分析、数据压缩、声音合成等领域。传统的离散傅里叶变换算法的计算复杂度较高,而快速傅里叶变换通过减少计算量,大大提高了运算速度。1.离散傅里叶变换(DFT)离散傅里叶变换(DFT)将离散的时间信号变换到频域。对于一个长度为(N)的离散序
- Kotlin Bytedeco OpenCV 图像图像55 图像透视变换
深色風信子
kotlinopencv透视变换bytedeco
KotlinBytedecoOpenCV图像图像53图像透视变换1添加依赖2测试代码3测试结果1添加依赖4.0.0com.xuKotlinOpenCV1.02.0.0UTF-8official1.8mavenCentralhttps://repo1.maven.org/maven2/cn.hutoolhutool-all5.8.29org.apache.commonscommons-compres
- HarmonyOS Next应用开发——图像PixelMap变换
【高心星出品】图像变换图片处理指对PixelMap进行相关的操作,如获取图片信息、裁剪、缩放、偏移、旋转、翻转、设置透明度、读写像素数据等。图片处理主要包括图像变换、位图操作,本文介绍图像变换。图形裁剪//裁剪图片x,y为裁剪的起始坐标,size为裁剪的图片宽和高temp.cropSync({x:20,y:20,size:{width:this.imagewidth-20,height:this.
- 机器学习数据预处理preprocessing之KernelCenterer
一叶_障目
机器学习人工智能
sklearn.preprocessing.KernelCenterer对矩阵XXX执行中心化操作,即使得核矩阵的行和列的均值为零给定二维矩阵XXX,可以下式得到其核变换矩阵KKK:K(X,X)=ϕ(X).ϕ(X)TK(X,X)=\phi(X).\phi(X)^TK(X,X)=ϕ(X).ϕ(X)T式中ϕ(X)\phi(X)ϕ(X)是一种将XXX从原始空间映射到希尔伯特空间的函数希尔伯特空间是一种完
- 用python编写的UKF(无迹卡尔曼滤波)代码,状态量和观测量都是三维、非线性的,注释使用中文
MATLAB卡尔曼
卡尔曼与pythonpython开发语言
用python编写的UKF(无迹卡尔曼滤波)代码,状态量和观测量都是三维、非线性的,注释使用中文文章目录代码讲解UKF类的构造预测步骤更新步骤辅助函数示例用法总结importnumpyasnpclassUKF:def__init__(self,dim_x,dim_z,alpha=1e-3,beta=2,kappa=0):self.dim_x=dim_x#状态维度self.dim_z=dim_z#观
- Python AI教程之二十一:监督学习之支持向量机(SVM)算法
潜洋
人工智能Python中级支持向量机算法机器学习python
支持向量机(SVM)算法支持向量机(SVM)是一种功能强大的机器学习算法,广泛用于线性和非线性分类以及回归和异常值检测任务。SVM具有很强的适应性,适用于各种应用,例如文本分类、图像分类、垃圾邮件检测、笔迹识别、基因表达分析、人脸检测和异常检测。SVM特别有效,因为它们专注于寻找目标特征中不同类别之间的最大分离超平面,从而使其对二分类和多分类都具有鲁棒性。在本大纲中,我们将探讨支持向量机(SVM)
- 深度学习驱动的极端天气预测:时空数据异常检测与应用全解析(基于Python + TensorFlow)
AI_DL_CODE
深度学习pythontensorflow人工智能天气预测
摘要:时空数据异常检测在气象领域识别偏离正常模式的数据点,对极端天气预测至关重要。深度学习,尤其是LSTM网络,因其强大的特征学习能力在该领域显示出巨大潜力。通过整合多源气象数据,深度学习模型能够自动挖掘复杂模式和非线性关系,提高预测准确性。然而,挑战依然存在,包括数据质量问题、模型可解释性不足以及极端天气的内在复杂性和不确定性。未来,通过模型架构创新、训练算法优化以及探索深度学习在气候预测、气象
- 基于Simulink的SVPWM控制的DC-AC变换器H桥逆变器
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏simulink
目录基于Simulink的SVPWM控制的DC-AC变换器H桥逆变器项目实例1.项目背景2.系统架构2.1DC电源2.2H桥逆变器2.3SVPWM控制器2.4滤波器2.5系统框图3.模型设计3.1创建Simulink模型3.2SVPWM控制策略设计3.3仿真环境搭建3.4仿真结果分析4.SVPWM控制策略的详细实现4.1扇区判断逻辑4.2作用时间计算4.3开关序列生成5.滤波器设计与优化5.1滤波
- 视觉SLAM学习打卡【8-1】-视觉里程计·直接法
肝帝永垂不朽
#SLAM计算机视觉opencvc++
本节直接法与上节特征点法,为视觉里程计估计位姿的两大主流方法。而在引出直接法前,先介绍光流法(二者均对灰度值I做文章)。至此,前端VO总算结束了。学下来一个感受就是前几章的数学基础很重要,尤其是构建最小二乘的非线性优化(BA),几乎每种方法都有其一席之地。视觉SLAM学习打卡【8-1】-视觉里程计·直接法一、光流法(1)前提(实际中较难满足)(2)理论推导(3)附:超定方程求解二、直接法(1)理论
- Pandas数据处理基础6---插值填充及其用法
阳光下的米雪
Pandas数据处理python
插值填充插值是数值分析中一种方法。简而言之,就是借助于一个函数(线性或非线性),再根据已知数据去求解未知数据的值。插值在数据领域非常常见,它的好处在于,可以尽量去还原数据本身的样子。我们可以通过interpolate()方法完成线性插值。当然,其他一些插值算法可以阅读官方文档了解。#生成一个DataFramedf=pd.DataFrame({'A':[1.1,2.2,np.nan,4.5,
- PyTorch 中的 expand 操作详解:用法、原理与技巧
专业发呆业余科研
深度模型底层原理pytorch人工智能python深度学习机器学习
在使用PyTorch进行深度学习时,张量形状与广播机制常常是让初学者感到困惑的地方。我们需要时常面对多维张量,并在批量、通道、空间位置等多个维度之间做运算。如果能熟练掌握各种维度变换操作——包括unsqueeze、expand、view/reshape、transpose/permute等,可以帮助我们灵活地操纵张量,写出高效而简洁的矩阵化(vectorized)代码。本文将重点聚焦于expand
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息