- 概率潜在语义分析(Probabilistic Latent Semantic Analysis,PLSA)—无监督学习方法、概率模型、生成模型、共现模型、非线性模型、参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习概率潜在语义分析PLSA
定义输入:设单词集合为W={ω1,ω2,⋯ ,ωM}W=\{\omega_1,\omega_2,\cdots,\omega_M\}W={ω1,ω2,⋯,ωM},文本集合为D={d1,d2,⋯ ,dN}D=\{d_1,d_2,\cdots,d_N\}D={d1,d2,⋯,dN},话题集合为Z={z1,z2,⋯ ,zN}Z=\{z_1,z_2,\cdots,z_N\}Z={z1,z2,⋯,zN},共现
- 潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)—无监督学习方法、概率模型、生成模型、线性模型、非参数化模型、贝叶斯学习、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习潜在狄利克雷分配LDA
定义输入:单词集合W={ω1,⋯ ,ωv,⋯ ,ωV},其中ωv是第v个单词,v=1,2,⋯ ,V,V是单词第个数。单词集合W=\{\omega_1,\cdots,\omega_v,\cdots,\omega_V\},其中\omega_v是第v个单词,v=1,2,\cdots,V,V是单词第个数。单词集合W={ω1,⋯,ωv,⋯,ωV},其中ωv是第v个单词,v=1,2,⋯,V,V是单词第个数。文
- 【机器学习】广义线性模型(GLM)的基本概念以及广义线性模型在python中的实例(包含statsmodels和scikit-learn实现逻辑回归)
Lossya
机器学习pythonscikit-learn线性回归人工智能逻辑回归
引言GLM扩展了传统的线性回归模型,使其能够处理更复杂的数据类型和分布文章目录引言一、广义线性模型1.1定义1.2广义线性模型的组成1.2.1响应变量(ResponseVariable)1.2.2链接函数(LinkFunction)1.2.3线性预测器(LinearPredictor)1.3常见的广义线性模型1.3.1线性回归1.3.2逻辑回归1.3.3泊松回归1.4GLM的特性1.5广义线性模型
- AdaBoost算法(AdbBoost Algorithm)—有监督学习方法、非概率模型、判别模型、非线性模型、非参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习提升方法AdaBoost
定义输入:训练数据集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}T={(x1,y1),(x2,y2),⋯,(xN,yN)},其中,xi∈χ⊆Rn,yi∈y={−1,+1}x_i\in\chi\subseteqR^n,y_i\in{\tty}=\{-1,+1\}xi∈χ⊆Rn,yi∈y={−1,+1}
- (感知机-Perceptron)—有监督学习方法、非概率模型、判别模型、线性模型、参数化模型、批量学习、核方法
剑海风云
ArtificialIntelligence机器学习人工智能感知机Perceptron
定义假设输入空间(特征空间)是χ\chiχ⊆Rn\subseteqR^n⊆Rn,输出空间是y={+1,−1}=\{+1,-1\}={+1,−1}。输入x∈χx\in\chix∈χ表示实例的特征向量,对应于输入空间(特征空间)的点;输出y∈y\iny∈y表示实例的类别。由输入空间到输出空间的如下函数:f(x)=sign(ω⋅x+b)f(x)=sign(\omega\cdotx+b)f(x)=sign
- K近邻法(K-nearest neighbor,K-NN)—有监督学习方法、非概率模型、判别模型、线性模型、参数化模型、批量学习、核方法
剑海风云
ArtificialIntelligence人工智能机器学习K近邻法KNN
定义输入:训练数据集(T={(x1,y1),(x2,y2),…,(xN,yN)}\left\{(x_1,y_1),(x_2,y_2),\dots,(x_N,y_N)\right\}{(x1,y1),(x2,y2),…,(xN,yN)})其中:xi∈χ⊆Rnx_i\in{\tt\chi}\subseteqR^nxi∈χ⊆Rn:实例的特征向量yi∈yy_i\in{\tty}yi∈y={c1,c2,⋯
- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 从0开始深度学习(4)——线性回归概念
青石横刀策马
从头学机器学习深度学习神经网络人工智能
1线性回归回归(regression)指能为一个或多个自变量与因变量之间的关系进行建模。1.1线性模型线性假设是指目标可以表示为特征的加权和,以房价和面积、房龄为例,可以有下面的式子:w称为权重(weight)b称为偏置(bias)、偏移量(offset)或截距(intercept)给定一个数据集,我们的目标是寻找模型的权重和偏置,使得根据模型做出的预测大体符合数据里的真实价格。1.2损失函数在我
- Datawhale X 李宏毅苹果书 AI夏令营-深度学入门task2:线性模型
m0_53743757
人工智能机器学习算法
1.线性模型把输入的特征x乘上一个权重,再加上一个偏置就得到预测的结果,这样的模型称为线性模型(linearmodel)2.分段线性模型线性模型也许过于简单,x1跟y可能中间有比较复杂的关系。线性模型有很大的限制,只能表示一条直线,这一种来自于模型的限制称为模型的偏差,无法模拟真实的情况。所以需要写一个更复杂的、更有灵活性的、有未知参数的函数。分段线性曲线(piecewiselinearcurve
- Python在神经网络中优化激活函数选择使用详解
Rocky006
python开发语言
概要在神经网络中,激活函数扮演着至关重要的角色。它的主要作用是引入非线性因素,使得神经网络能够处理复杂的非线性问题。如果没有激活函数,神经网络仅仅是线性模型的堆叠,无法胜任深度学习中的各种任务。本文将深入探讨几种常用的激活函数,包括Sigmoid、Tanh、ReLU及其变种,并通过具体的代码示例展示它们在Python中的实现和应用。激活函数的重要性激活函数将输入信号进行非线性转换,从而增强神经网络
- 探索数据世界的钥匙:机器学习中的线性回归
程序员-李旭亮
机器学习
在浩瀚的数据海洋中,寻找隐藏的模式与规律,一直是科学家、工程师乃至各行各业决策者们的共同追求。而机器学习,作为这一领域的璀璨明珠,以其强大的数据分析与预测能力,正逐步改变着我们的世界。在众多机器学习算法中,线性回归以其简洁、直观、易于理解的特点,成为了入门机器学习的首选,更是解决回归问题的一把金钥匙。一、线性回归:定义与原理线性回归,顾名思义,是一种通过线性模型来预测一个或多个自变量(X)与因变量
- 红队攻防渗透技术实战流程:红队资产信息收集之单个目标信息收集
HACKNOE
红队攻防渗透技术研习室web安全安全系统安全
红队资产信息收集1.企业基础资产信息收集2.企业子域名信息收集3.企业单个目标信息收集3.1企业域名IP信息收集3.1.1企业域名查询IP地址3.1.1.1CMD直接PING目标域名3.1.1nslookup直接解析域名3.1.1威胁情报网站辅助查询3.1.1IPsite网站网站查询3.1.1站长SEO网站IP查询3.1.1Netcraft网站IP查询3.1.1站长IP查询网站辅助查询3.1.1埃
- 机器学习(西瓜书)学习笔记导览
盛寒
机器学习西瓜书学习机器学习人工智能
本篇文章会持续更新直到更新完毕,关注博主不迷路~(如果没有超链接,表示还没有更新到)第一章绪论1.1引言1.2基本术语1.3假设空间1.4归纳偏好第二章模型评估与选择2.1经验误差与过拟合2.2评估方法2.3性能度量2.4比较检验2.5偏差与方差第三章线性模型3.1基本形式3.2线性回归3.3对数几率回归3.4线性判别分析3.5多分类学习3.6类别不平衡问题第四章决策树4.1基本流程4.2划分选择
- 【机器学习】特征工程的基本概念以及LASSO回归和主成分分析优化方法
Lossya
机器学习回归人工智能算法特征工程
引言特征工程是机器学习中的一个关键步骤,它涉及到从原始数据中提取和构造新的特征,以提高模型的性能和预测能力LASSO(LeastAbsoluteShrinkageandSelectionOperator)回归是一种用于回归分析的线性模型,它通过引入L1正则化(Lasso正则化)来简化模型并减少过拟合的风险主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的降维技术
- Datawhale X 李宏毅苹果书 AI夏令营Day02
xuanEpiphany29
人工智能
一、打卡Datawhale进入打卡链接选择相对应的任务打卡就可以了二、学习1、线性模型依旧是b站上老师的授课视频,我找到知乎上解释很好的文章,分享一下机器学习(一)线性模型————理论篇线性回归模型、对数几率模型、线性判别分析模型、多分类学习模型-知乎(zhihu.com)(1)、模型概述线性模型是机器学习中一种非常基础且重要的模型,广泛应用于分类和回归任务。线性模型的基本思想是通过一个线性方程来
- 什么是多层线性回归(层次线性模型)?
数据派THU
线性回归机器学习算法回归人工智能
本文约2100字,建议阅读5分钟本文介绍了多层线性回归。再进行实证研究和数据分析时,我们经常会使用到线性回归模型。不过线性回归模型因其简单易懂而广受欢迎,但在处理一些复杂数据时,这种模型往往力不从心。就比如现实数据常常呈现出层次或分组的特征,而普通线性回归模型无法有效地解释这种内在的层次结构。为了克服这一限制,多层线性回归模型(也称为层次线性模型)应运而生。线性回归的局限假设我们正
- 逻辑回归C参数选择,利用交叉验证实现
吃什么芹菜卷
机器学习逻辑回归算法机器学习笔记
目录前言一、C参数二、交叉验证1.交叉验证是什么2.交叉验证的基本原理3.交叉验证的作用4.常见的交叉验证方法三、k折交叉验证四、C参数和k折交叉验证的关系五、代码实现1.导入库2.k折交叉验证选择C参数3.建立最优模型总结前言逻辑回归(LogisticRegression)是一种用于二分类问题的统计模型和机器学习算法,旨在预测事件的概率。它基于一个线性模型,并通过一个逻辑函数(通常是Sigmoi
- regression机器学习回归预测模型参考学习后自我总结
饮啦冰美式
机器学习回归学习
简单来说,就是将样本的特征矩阵映射到样本标签空间。回归分析帮助我们理解在改变一个或多个自变量时,因变量的数值会如何变化。线性模型线性回归用于建立因变量和一个或多个自变量之间的线性关系模型。在线性回归中,假设因变量(被预测变量)与自变量(预测变量)之间存在着线性关系,也就是说,因变量的数值可以通过自变量的线性组合来预测。普通最小二乘线性回归。通过最小化实际观测值与模型预测值之间的误差平方和,可以找到
- 人工智能底层自行实现篇2——多元线性回归
ALGORITHM LOL
人工智能线性回归回归
2多元线性回归1.简介多元线性回归是一种统计建模方法,用于研究多个自变量与一个因变量之间的关系。它是简单线性回归的扩展,简单线性回归只涉及一个自变量和一个因变量。在多元线性回归中,我们可以使用多个自变量来预测一个因变量。多元线性回归的基本原理是通过拟合一个线性模型来描述自变量与因变量之间的关系。这个线性模型通常采用最小二乘法来估计参数,使得模型预测值与实际观测值之间的残差平方和最小化。多元线性回归
- GWAS分析
wo_monic
PlinkFaST-LMMTASSEL有Windows版本FaST-LMM-SelectGAPIT基于RGAPIT和Tassle等的对比。TASSEL5命令行模式运行方法1.典型的MLM(混合线性模型)分析管道命令如下:perlrun_pipeline.pl-fork1-hgenotype.hmp-filterAlign-filterAlignMinFreq0.05注:导入基因型数据并过滤-for
- 3.1.爬虫
sty3318
python学习爬虫python学习
3.1.1.什么是网络爬虫网络爬虫(WebCrawler)是一种自动化程序,可以自动地在互联网上浏览和获取信息。它通常会从指定的起始点开始,按照一定规则遍历网页,获取所需数据并进行抓取、解析、存储等操作。3.1.1.1.网络爬虫大体组成网络爬虫的结构可以根据具体需求和实现方式有所不同,但通常包括以下几个核心组件:调度器(Scheduler):调度器负责管理爬取任务的调度和控制流程。它维护一个待爬取
- Task4 - 建模与调参
100MHz
1.内容介绍线性回归模型:线性回归对于特征的要求;处理长尾分布;理解线性回归模型;模型性能验证:评价函数与目标函数;交叉验证方法;留一验证方法;针对时间序列问题的验证;绘制学习率曲线;绘制验证曲线;嵌入式特征选择:Lasso回归;Ridge回归;决策树;模型对比:常用线性模型;常用非线性模型;模型调参:贪心调参方法;网格调参方法;贝叶斯调参方法;2.一些基本模型线性回归(LinearRegress
- 学习:StatQuest-逻辑回归
小潤澤
前言逻辑回归的底层是由线性回归所支撑的,它所用于将线性模型转换为概率模型进行分类:图1图2图3图2是计算逻辑回归事件概率图3计算odds和事件概率逻辑回归逻辑回归强调的是一种分类image.png由这个图上,我们可以看到小鼠被严格的分为两类,Obese和NotObese,这样分类是否太严格了,我们完全可以设立一个阈值,根据已有的特征来进行分类:image.png比方说我建立一个线性模型,然后转换为
- RBF神经网络中的RBF的英文全称是什么,是用来干什么的?
神笔馬良
神经网络人工智能深度学习
问题描述:RBF神经网络中的RBF的英文全称是什么,是用来干什么的?问题解答:RBF神经网络中的RBF是径向基函数(RadialBasisFunction)的缩写。径向基函数是一种在机器学习和模式识别中常用的函数类型,它们通常用于构建非线性模型。在RBF神经网络中,径向基函数被用作隐藏层的激活函数,用来将输入数据从输入空间映射到一个高维的特征空间,从而实现非线性的数据拟合和模式识别。具体来说,径向
- 多个总体均值的比较(多元方差分析)
亦旧sea
均值算法算法
多元方差分析是什么多元方差分析是一种统计方法,用于比较两个或更多组的均值在一个或多个自变量上的差异是否具有统计学意义。它可以同时考虑多个自变量对因变量的影响,以及自变量之间的交互作用。它是广义线性模型的拓展,适用于因变量为连续变量且自变量为分类变量的情况。多元方差分析可以帮助研究者确定各组之间是否存在显著差异,并评估自变量的影响程度。它常用于社会科学、医学研究等领域中。多元方差分析的原理多元方差分
- 《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
软工菜鸡
《零基础实践深度学习》numpy深度学习人工智能大数据机器学习飞桨百度云
2.5模型保存Numpy提供了save接口,可直接将模型权重数组保存为.npy格式的文件。In[53]np.save('w.npy',net.w)np.save('b.npy',net.b)总结本节我们详细介绍了如何使用Numpy实现梯度下降算法,构建并训练了一个简单的线性模型实现波士顿房价预测,可以总结出,使用神经网络建模房价预测有三个要点:构建网络,初始化参数w和b,定义预测和损失函数的计算方
- 深度学习之线性模型
温柔了岁月.c
机器学习深度学习人工智能
深度学习之线性模型y=w*x模型思路y=w*x+b模型思路y=w*x模型思路这里求权重w,求最适合的权重,就是求损失值最小的时候这里用穷举法:在一个范围内,列出w的所有值,并且计算出每组数据的平均损失值,以w为横坐标,损失值为纵坐标,作图,找到损失值最低的点,对应的就是最适合的wimportnumpyasnpimportmatplotlib.pyplotasplt#线性模型:y=w····*x#此
- Python概率建模算法和图示
亚图跨际
数学机器学习Pythonpython算法概率建模统计
要点Python朴素贝叶斯分类器解释概率学习示例Python概率论,衡量一个或多个变量相互依赖性,从数据中学习概率模型参数,贝叶斯决策论,信息论,线性代数和优化Python线性判别分析分类模型,逻辑回归,线性回归,广义线性模型Python结构化数据,图像和序列神经网络朴素贝叶斯分类器示例概率学习在机器学习的广阔领域中,概率学习开辟了自己独特的空间。在统计和概率的驱动下,概率学习侧重于对数据中存在的
- 通俗讲解支持向量机SVM(一)面试官:什么?线性模型你不会不清楚吧?
番三克
当你的才华还撑不起你的野心时,你应该静下心去学习。(这篇文章是从我的博客搬运来的,有兴趣的可以来阅读我的文章,欢迎交流指正。)前言我在写这篇博文之前,也查阅学习了很多文章,内容已经非常详细,足够精彩,比如JULY的这篇支持向量机通俗导论(理解SVM的三层境界)当然,我这里也会介绍全部SVM相关内容,但重点对SVM的提出思路和我在读文章过程中遇见的难点问题分享一些我自己的理解,意在让一些跟着SVM算
- Arxiv网络科学论文摘要25篇(2020-03-17)
ComplexLY
COVID-19疫情是否可以根据每日数据进行管理?;COVID-19大流行演变中的症状前传播;Covid-19传播:在欧几里得网络上使用SIR模型进行数据再现和预测;数据驱动的接触结构:从均匀混合到多层网络;城市间移动对中国人口空间分布的影响;市场状态:新的认识;复杂动态网络上的有效通信:矩阵非正规性的作用;使用一跳线性模型的简单有效图自动编码器;互补驱动网络的潜在几何;基于边的有效方法促进SIR
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默