TRIM:提升磁盘性能,缓解Android卡顿

Android 系统越用越卡的问题,可能存在的原因

1、先 说内存。为了保证应用可以快速被再次调起,Android 在内存管理上采用如下策略:进程保持在内存中,在占用内存未超过阈值之前不会系统进行主动清理。但随着应用的增多,试图保持在内存中的进程将会增多,因此 影响系统的流畅度。可以说,内存与系统卡顿的关系早已是业界的共识,其解决方案也比较明了,即赋予系统主动清理内存的能力,例如待机后杀掉不必要的进程。

2、再聊磁盘。长期使用 Android 手机必将产生大量的磁盘碎片,而磁盘碎片将会降低磁盘的读写性能,从而影响系统流畅度。但是磁盘碎片是否能对磁盘的读写性能造成了很大影响,以至于影响系统流畅度尚未可知,且暂时也没有发现可以进行尝试的潜在优化点。

逐步分析

Step 0:磁盘与系统流畅度的关系

其实,日常的生活经验(例如 SSD 可以让老笔记本焕发新生)已经我们能够感觉得到磁盘对系统流畅度的影响很大。但是,这里还是有再必要简单说一下,磁盘是如何影响系统流畅度的。

开 发过 Android 项目的同学都知道 Android 在使用网络的最佳实践是使用3级缓存的设计来提升系统的流畅度并节省流量:CPU 首先尝试从内存中加载图片,若此时图片存在在内存中则加载成功,否则内存会从磁盘中加载图片,若此时图片存在在磁盘中则加载成功,否则磁盘会最终向网络中 下载图片。

其实上述的执行逻辑,也就解释了磁盘是 如何影响系统流畅度的:对于系统流畅度(其实也是各个应用的流畅度)影响最直接的就是 CPU 的执行效率,但是如果这个过程中内存、磁盘以及网络的读写速度如果跟不上 CPU 的执行效率的话,就会造成 CPU 在处理任务的时候需要花费时间等待数据,从而影响了流畅度。

所以第一个问题就弄清楚了:磁盘的读写速度的降低会使得系统流畅度变差!那么,我们要分析的问题就转化成:磁盘在长期使用的过程中,其读写速度会不会降低。

Step 1:弄清 Android 磁盘的读写机制

为了分析清楚磁盘“磁盘在长期使用的过程中,其读写速度会不会降低”这个问题,我们有必要先弄明白 Android 磁盘所采用的读写机制。

通 过资料查阅,我们了解到目前,Android 手机大多采用 NAND Flash 架构的闪存卡来存储内容。NAND Flash 的内部存储单位从小到大依次为:Page、Block、Plane、Die,而一个 Device 上可以封装若干个 Die。下图就是一个 NAND Flash 组成结构的示意图。

TRIM:提升磁盘性能,缓解Android卡顿_第1张图片

为了方便理解,针对一个 Die,我们再抽象一下,Page、Block、Plane、Die 的关系如下图所示。

TRIM:提升磁盘性能,缓解Android卡顿_第2张图片

虽然 NAND Flash 的优点多多,但是为了延长驱动器的寿命,它的读写操作均是以 Page 为单位进行的,但擦除操作却是按 Block 为单位进行的。

由于有大量的读写操作,于是我们的 NAND Flash 制定了如下的读写规则:

删除数据时,芯片将标记这些 Page 为闲置状态,但并不会立马执行擦除操作。

写入数据时,如果目前磁盘剩余空间充足,则由芯片指定 Block 后直接按 Page 为单位进行写入即可。

写入数据时,如果目前磁盘剩余空间不足,为了获得足够的空间,磁盘先将某块 Block 的内容读至缓存,然后再在该 Block 上进行擦除操作,最后将新内容与原先内容一起写入至该 Block。

那 么问题来了!假如现在我要向磁盘中写入一张图片的数据,这个图片的数据大小刚好为一个 Page。最坏的情况就是,内存中恰好只有一个 Block 恰好有一个 Page 的无效数据可以擦除。为了存下这张图片,于是主控就把这个 Block 的所有数据读至缓存,擦除Block上的内容,再向缓存中加上这个4KB 新数据后最后写回 Block 中。

我 的天啊,其实想存储的就是1个 Page 的图片内容,但是实际上确造成了整个 Block 的内容都被重新写入,同时原本简单一步搞定的事情被还被分成了前后四步执行(闪存读取、缓存改、闪存擦除、闪存写入)造成延迟大大增加,速度变慢。这就是 传说中的“写入放大”(Write Amplification)问题。而“写入放大”也说明了磁盘在长期使用的过程中,其读写速度(尤其是写入速度)会存在降低的现象。

Step 2:解决“写入放大”问题的技术——TRIM

不过,既然“写入放大”(Write Amplification)都这么出名了,肯定不会没有现成的解决方案的!这个很简单,Google 一下,我们就知道解决方案就是 TRIM 技术。

TRIM 是一条 ATA 指令,由操作系统发送给闪存主控制器,告诉它哪些数据占的地址是“无效”的。在 TRIM 的帮助下,闪存主控制器就可以提前知道哪些 Page 是“无效”的,便可以在适当的时机做出优化,从而改善性能。这里要强调下,TRIM 只是条指令,让操作系统告诉闪存主控制器这个 Page 已经“无效”就算完了,并没有任何其它多余的操作。在测试的过程中,我们发现 TRIM 的触发需要操作系统、驱动程序以及闪存主控三者都支持才能真正意义上实现。例如:

操作系统不支持的情况:Android 4.3以下均不支持

闪存主控不支持的情况:Samsung Galaxy Nexus(I9250)所选用的闪存不支持

基于 TRIM 技术,目前常见有两种方案可以解决“写入放大”的问题:

discard 选项。该方案将在挂载 ext4 分区时加上 discard 选项,此后操作系统在执行每一个磁盘操作时同时都会执行 TRIM 指令。该方案的优点是总体耗时短,但影响会到删除文件时的性能。

fstrim 命令。该方案将选择合适的时机对整个分区执行 TRIM 操作。相对于方案一,该方案总体耗时较长,但不会影响正常操作时的磁盘性能。

不得不说,如果从用户的角度出发,还是 FSTRIM 的方法更靠谱一些,但如何寻找合适的 TRIM 时机就是一个比较讲究的问题了。

Step 3:TRIM 在 Android 中的实现

根据前面的分析,我们不难理解在 Android 中的 TRIM 选择通过 fstrim 命令的方式进行实现。那么,Google 又是如何设计触发TRIM的时机呢?

通 过走读 Android 源码(AOSP 4.4.4),可以了解到 Android 通过系统服务 IdleMaintenanceService 来进行系统状态监控并决定何时触发 TRIM。根据 IdleMaintenanceService.java 源码,我们绘制了 fstrim 的触发示意图如下:

TRIM:提升磁盘性能,缓解Android卡顿_第3张图片

注释:

有/无操作:距屏幕熄灭||屏保启动已超过71分钟

是/否电量充足:维护期20%,非维护期(充电状态30%,非充电状态80%)

是/否维护超时:启动维护已超过71分钟

是/否已到维护期:据上次启动维护超过1天

Step 4:分析闪存碎片及 TRIM 对磁盘 I/O 性能的影响

了解了这么多技术背景,那我们通过测试数据分析闪存碎片和 TRIM 对磁盘 I/O 性能的影响。根据测试目的,具体的测试设置如下:

测试目的

评估闪存碎片和TRIM对磁盘 I/O 性能的影响

测试方案

测试对象:LG Nexus 5 with cm-11-20140805-SNAPSHOT-M9-hammerhead

测试步骤

重新刷机,使用 Bonnie++ 测试 SD 卡目录的 I/O 性能;

模拟长期使用 SD 卡的过程(期间需要避免TRIM触发),使用 Bonnie++ 测试 SD 卡目录的 I/O 性能;

主动触发 TRIM,使用 Bonnie++ 测试 SD 卡目录的 I/O 性能。

备注:

模拟长期使用 SD 卡的过程的方法:开发专用的测试应用,该应用将向 SD 卡目录不停写入大小随机的文件,当 SD 卡剩余空间不足时将删除所写入的文件,然后继续上述操作直到应用退出。

避免 TRIM 触发的方法:根据 Android 的触发过程分析,只需设置屏幕常亮并即可避免 TRIM 的触发。

测试数据

TRIM:提升磁盘性能,缓解Android卡顿_第4张图片

数据解读:

通过反复擦写 SD 卡,可以发现 SD 卡的 I/O 效率指标均存在一定幅度的下滑,其中反映磁盘空间分配性能及文件数据写回性能的指标下滑明显;

Sequential Output-Block 可以反映分配磁盘文件空间的效率,经反复擦写 SD 卡后,该效率降低至原始值的15-20%,应该是大量的磁盘闲置数据块造成的影响;

Sequential Output-Rewrite 可以反映文件系统缓存和数据传输的速度,经反复擦写 SD 卡制造闲置数据块后,该效率降低至原始值的50%。

主动调用 TRIM 后,可以发现 SD 卡的 I/O 效率指标均恢复至接近原始值水平(但仍未完全达到初始状态的水平)。

测试结论

在 TRIM 无效的情况下,长期使用 SD 卡,磁盘写入速度会受到明显影响;

TRIM 对因闲置数据块造成的 I/O 性能下降有一定的恢复作用;

大量的读写操作对 SD 卡造成了一定量的不可恢复的损耗。

Step 5:FSTRIM 系统自动触发测试

完成了上面的工作,不由得让我们大吃一鲸:原来 TRIM 对 SD 卡的读写速度的维护如此重要!前面也说到,Android 选择 FSTRIM 方案的来实现 TRIM,那么 Android 所设计的 FSTRIM 触发时机有没有什么问题呢?

根据 Android 系统的设定,FSTRIM 预期是每隔24小时触发一次。所以,接下来我们需要评估一下,FSTRIM 能否依据上述设定成功被系统触发。

测试目的

分析 FSTRIM 能否被按时被系统触发

测试方案

测试对象:2台 Samsung Galaxy Nexus 及2台 LG Nexus 5

测试步骤

刷机后,安装常用应用并启动(均无SIM卡,其中1台设备开启 Wifi,另1台设备关闭 Wifi);

进行 Log 记录;

强制执行一次 FSTRIM;

灭屏等待30小时左右,提取 Log 记录进行分析。

测试数据

开启WiFi

关闭WiFi

Samsung Galaxy Nexus启动FSTRIM 1次启动FSTRIM 1次

LG Nexus 5未启动FSTRIM启动FSTRIM 1次

数据解读:

FSTRIM 大多数情况会被自动触发,但也存在无法触发的情况;

根据 FSTRIM 的触发逻辑,是否开启 WIFI 对 FSTRIM 的影响主要是有无推送消息(影响灭屏条件)以及不同的耗电。

测试结论

测 试数据显示 FSTRIM 大多数情况会被自动触发,但也存在无法触发的情况。可能的原因是:FSTRIM 对电量的要求略高,所以一旦发生意外情况(如应用的 PUSH 消息)终止了计划 FSTRIM 的执行之后,很长时间之内都无法再满足 FSTRIM 的启动条件。

所以,如需提高其触发频率,我们可以考虑降低触发条件中对电量的要求。

总结:

磁盘碎片(更准确的说法是 SD 卡中的闲置数据块)会严重影响磁盘的读写性能,可能会导致 Android 系统越用越卡,而 Android 系统的 FSTRIM 对此有恢复的作用;

经过实验分析, FSTRIM 并不一定能够按期(每天一次)执行。而导致这一问题的原因可能是 IdleMaintenanceService 对电量的要求过高(未充电状态下大于80%)。

优化:

FSTRIM 对电量的要求略高,如需提高其触发频率可以从降低触发条件中对电量的要求;

在必要的情况下,可以发送特定的 Intent 事件,使系统强制触发 FSTRIM。

你可能感兴趣的:(TRIM:提升磁盘性能,缓解Android卡顿)