- 大学生社交平台-开题报告
yh1340327157
计算机开题报告参考案例java大数据jvmspringboot开发语言intellij-ideamaven
1.结合毕业设计课题情况,根据所查阅的文献资料,每人撰写1500字左右的文献综述(包括研究进展,选题依据、目的、意义)(1)选题依据随着互联网的发展,网络技术角已深深嵌入社会生活的各个层面,网络已然成为我们日常生活中不可或缺的一部分。大学生群体作为对新事物接受度极高的群体,受互联网影响尤为显著,这其中社交服务平台则是大学生在网络中进行互动和沟通的重要渠道和组成部分。但以往传统的大学生社交论坛往往只
- 广告监测中的iGRP:概念解析与计算方法
weixin_47233946
算法广告分析
1.什么是iGRP?iGRP(InternetGrossRatingPoints,互联网总收视点)是衡量数字广告活动效果的核心指标之一,由传统电视广告中的GRP(GrossRatingPoints)演变而来。它综合评估了广告在目标人群中的覆盖广度(到达率)和触达深度(频次),为广告主提供跨渠道效果对比的统一标准。2.传统GRP的计算逻辑回顾传统GRP的计算公式为:[\text{GRP}=\text
- 【AIDD药物研发】张载熙-生成式AI4药物发现
静静喜欢大白
医疗影像人工智能AIDD药物研究药物生成生成
目录1、简介2、生成式AI用于基于结构式的药物发现背景生成用于靶标结合的类药小分子功能性蛋白质的生成与优化其他新的药物形式及生物安全/安全性小结3、参考4、补充学习资料1、简介最近需要简单了解喜爱AIDD流程以及相关进展调研,看到zaixizhang正在做相关研究,进行下面的学习记录张载熙中国科学技术大学计算机科学与技术学院2021级博士生(导师刘淇教授),认知智能全国重点实验成员,本科毕业于中国
- 【极光优化算法+分解对比】VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测Matlab代码
matlab科研助手
算法transformerlstm
✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍光伏发电作为一种清洁能源,其功率预测对于电网稳定运行和电力系统调度至关重要。然而,光伏功率具有高度的非线性和波动性,传统的预测方法难以准确捕捉其动态特性。近年来,深度学习技术在时间序列预测领域取得了显著进展,为提高光伏功率预测精度提供了新的途径
- 突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
关键词:量子计算、电子干涉测量、等离子体脉冲、马赫-曾德尔干涉仪、非绝热量子操控研究背景在量子计算领域,飞行量子比特(flyingqubits)因其动态传播特性和通过库仑相互作用直接纠缠的能力,成为替代光子量子比特的重要方案。然而,实现高保真度的单电子注入与相干操控一直是技术瓶颈。近期发表于《NatureCommunications》的研究首次在14微米电子马赫-曾德尔干涉仪(MZI)中实现了30
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- 大语言模型应用指南:谷歌 Gemini 简介
AI天才研究院
AI大模型企业级应用开发实战AI人工智能与大数据计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:谷歌Gemini简介关键词:大语言模型,Gemini,谷歌,人工智能,应用指南1.背景介绍近年来,人工智能领域取得了突破性进展,尤其是大语言模型(LargeLanguageModels,LLMs)的出现,彻底改变了我们与信息交互的方式。从最初的聊天机器人到如今的代码生成、文本创作等领域,LLMs展现出惊人的能力。谷歌作为科技巨头,一直走在人工智能研究的前沿。继BERT、LaMD
- 人形机器人运动控制技术演进:从强化学习到神经微分方程的前沿解析
1.引言:人形运动控制的挑战与范式迁移人形机器人需在非结构化环境中实现双足行走、跑步、跳跃等复杂动作,其核心问题可归结为高维连续状态-动作空间的实时优化。传统方法(如基于模型的预测控制MPC)依赖精确的动力学建模,但在实际系统中面临以下瓶颈:模型失配:复杂接触动力学(如足-地交互)难以显式建模;计算瓶颈:高维非线性优化难以满足实时性需求;环境扰动敏感:传统控制器对未知干扰的鲁棒性不足。近年来,以强
- 交叉熵损失和负熵似然损失(对分类器有用)
流量留
深度学习人工智能机器学习算法
1.**交叉熵损失(Cross-EntropyLoss)**-**定义**-交叉熵损失是用来衡量分类模型输出的概率分布与真实标签的概率分布之间的差异。假设对于一个分类任务,有\(C\)个类别,模型对第\(i\)个样本的输出是一个概率分布\(\mathbf{p}_i=[p_{i1},p_{i2},\dots,p_{iC}]\),其中\(p_{ic}\)表示模型预测样本属于第\(c\)类的概率。真实标
- 数字营销中衡量广告效果的核心指标
走过冬季
学习笔记数据仓库数据分析
数字营销中衡量广告效果的核心指标可按目标层级分为以下几类,结合最新行业趋势与标准整理如下:一、曝光与互动指标CTR(点击率)定义:广告被点击次数占展示次数的比例,反映广告吸引力。公式:CTR=点击次数÷展示次数×100%应用:CTR<1%需优化文案或受众定位;社媒广告CTR高于搜索广告。VTR(视频观看完成率)定义:用户完整观看视频广告的比例,评估内容质量。公式:VTR=完整观看次数÷展示次数×1
- 【架构基础】系统性能基础知识
Programmer Liu
架构基础系统架构
一、系统性能概述在当今数字化时代,各类系统(如计算机系统、网络系统、软件应用系统等,以下统称系统)的性能优劣直接影响着用户体验、业务效率以及企业的竞争力。深入理解系统性能基础知识,对于系统开发、运维和优化人员而言至关重要。本文将围绕性能指标、性能计算、性能设计、性能评估四个核心方面展开,帮助读者全面掌握系统性能的关键要点。二、性能指标性能指标是衡量系统性能优劣的具体量化标准,不同类型的系统关注的性
- 如何打造自己的赚钱系统
东野进化论
经验分享
以下内容针对所有的老板个人团队自媒体产品经理或者这个就是所有赚钱的底层逻辑1,衡量自己的实力,找自己的对标衡量自己实力,里面包含认识自己,认识自己长板,认识自己的能力,了解自己的可触碰资源,可使用技能。找目标,用自己的各种综合实力找一个自己能模仿的生意,这个生意一定是经过调研以后,自己的技能实力以及学习,可以打通的一套生意。一定是能做到一比一模仿的2,执行力在复制一个好生意的时候,这个生意的量级一
- C#上位机串口接口
weixin_44710358
上位机通信上位机通信
文章目录前言C#上位机串口接口特点:数据一位接一位地依次传输,具有简单、通用性强等优点,但传输速度相对较慢。一串口概述二、使用步骤前言C#上位机串口接口特点:数据一位接一位地依次传输,具有简单、通用性强等优点,但传输速度相对较慢。一串口概述串口参数串口号:标识设备连接的串行端口,如“COM1”“COM3”等。波特率:衡量数据传输速率的指标,单位是比特/秒(bps),常见的有9600、115200等
- 机器学习在智能金融风险评估中的应用:信用评分与欺诈检测
Blossom.118
机器学习与人工智能机器人机器学习人工智能python深度学习sklearn计算机视觉
在金融行业,风险评估是确保金融机构稳健运营的关键环节。随着大数据和机器学习技术的快速发展,金融机构开始探索如何利用机器学习算法来提高风险评估的准确性和效率。本文将探讨机器学习在智能金融风险评估中的应用,特别是信用评分和欺诈检测方面的最新进展,并分析其带来的机遇和挑战。一、智能金融风险评估中的信用评分(一)传统信用评分方法的局限性传统的信用评分主要依赖于人工规则和简单的统计模型,如逻辑回归。这些方法
- Elasticsearch性能调优金字塔:从分片与副本策略构建海量日志分析平台
lingRJ777
Java技术栈应用javabackendelasticsearchspringbootmicroserviceselk
Elasticsearch性能调优金字塔:从分片与副本策略构建海量日志分析平台引言在当前的微服务架构体系中,一个复杂的业务流程往往会横跨数十甚至上百个服务。当线上出现问题时,如何从每天产生的TB级海量日志中快速定位根源,成为衡量系统可观测性的关键。传统的日志聚合方案在面对如此巨大的数据量时,普遍会遇到两大核心挑战:高并发写入瓶颈:数千个服务实例同时产生大量日志,要求日志系统具备极高的写入吞吐能力,
- 聚象生活APP最新进展:公布解决方案积极应对,全力保障用户权益
弃***惜
生活
一、事件最新动态:处理方案已公布近日,聚象生活APP及其关联主体山西光恒建筑工程有限公司疑似发布公告,针对线上惠农助农项目运营调整问题提出具体解决方案。据多方信息显示,该公司正积极与用户沟通协商,力求妥善解决相关问题。这一积极态度表明,聚象生活APP正努力维护用户权益,推动事件向好的方向发展。根据天眼查公开信息,山西光恒建筑工程有限公司成立于2018年,注册资本5000万元,此前主要承接市政工程项
- 算法复杂度分析
每天一个秃顶小技巧
算法java后端数据结构
算法复杂度分析前言算法(Algorithm)是指用来操作数据、解决程序问题的一组方法。对于同一个问题,使用不同的算法,也许最终得到的结果是一样的,但在过程中消耗的资源和时间却会有很大的区别。那么我们应该如何去衡量不同算法之间的优劣呢?主要还是从算法所占用的「时间」和「空间」两个维度去考量。时间维度:是指执行当前算法所消耗的时间,我们通常用时间复杂度来描述。空间维度:是指执行当前算法需要占用多少内存
- 【如何衡量相机标定结果的精度】相机标定评价函数
王尼莫啊
目标解算数码相机计算机视觉视觉检测
相关博客:【鱼眼+普通相机】相机标定【opencv】图像畸变校正一、简介常用的衡量相机标定结果精度的评价标准:畸变矫正效果:标定过程中会估计畸变系数,畸变矫正的效果可以通过比较矫正前后的图像来评估。如果畸变得到有效矫正,说明标定过程较为成功。重投影误差(ReprojectionError):这是最常用的评估相机标定精度的指标。它指的是在标定图像中检测到的特征点与通过相机参数投影得到的相应世界坐标点
- 长尾形分布论文速览【80-119】
木木阳
Long-tailed人工智能
为便于理解和应用,以下将30篇关于长尾分布的研究文献按主题进行分类整理。每一大类包含相应的工作,帮助我们从整体上把握各方向的研究进展。1.长尾半监督学习与伪标签优化Paper90:Uncertainty-awareSamplingforLong-tailedSemi-supervisedLearning提出了一种动态阈值选择方法(UDTS),能有效改善尾部分类性能,适用于不平衡类别的半监督学习。P
- 扣带回灰质体积:双任务步态与痴呆发病关联的关键中介
楚山之石
学习图像处理科技人工智能mr
扣带回灰质体积介导双任务步态与痴呆发病的关联研究背景与核心问题随着全球人口老龄化,痴呆已成为重大公共卫生挑战,而轻度认知障碍(MCI)作为正常认知与痴呆的过渡状态,是早期干预的关键窗口。双任务步态测试(行走时执行认知任务)中出现的高双任务成本(DTC,即步态速度较单任务时减慢≥20%),已被证实与MCI患者进展为痴呆的风险升高相关,但这一关联的神经机制尚不明确。本研究旨在探索脑灰质体积减少和运动皮
- 无需多卡集群,单卡运行扩散模型的技术突破与实践
源客z
stablediffusion
近年来,扩散模型(DiffusionModels)在图像、视频、3D生成等领域取得巨大进展。然而,传统扩散模型往往依赖多卡集群(如8×A100)进行高效训练与推理,这使得个人开发者和中小团队的应用受限。幸运的是,随着模型架构优化、量化技术、推理加速方案的发展,越来越多的开源扩散模型可以在单张消费级显卡(如RTX4090、T4、A6000)上运行,并且性能接近或超越原生大规模模型。本文整理了当前可在
- AttnRNN:参数更少,却断档碾压LSTM/GRU的新RNN
wq舞s
人工智能python深度学习deeplearningai科技pytorch
研究者与发布者为:CSDNwq舞s,知乎wqwsgithubwqws突破性进展!新型注意力RNN(AttnRNN)在长序列任务中全面超越传统RNN模型在深度学习领域,循环神经网络(RNN)及其变体GRU和LSTM长期以来一直是处理序列数据的首选架构。然而,它们在长序列任务中始终存在信息遗忘和梯度消失等问题。今天,我很高兴地宣布一种全新的RNN架构——AttnRNN,它在多个长序列基准测试中全面超越
- 【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
Akttt
T2I计算机视觉人工智能text2img深度学习
CODE:2309https://github.com/StevenShaw1999/RnBABSTRACT近期的文本到图像(T2I)扩散模型在以文本提示作为输入生成高质量图像方面取得了显著进展。然而,这些模型无法传达布局指令所指定的合适空间构图。在这项工作中,我们探索了使用扩散模型进行零样本接地T2I生成,即无需训练辅助模块或微调扩散模型就能生成与输入布局信息相对应的图像。我们提出了一种区域与边
- 2025年AI十大趋势:从多模态大模型到自主智能体
zhuzhi
人工智能大数据
2025年AI十大趋势:从多模态大模型到自主智能体人工智能技术正以前所未有的速度重塑着我们的世界。2025年,AI领域将迎来一系列突破性进展,从多模态大模型的全面进化到自主智能体的广泛应用,这些技术变革正在重新定义人机交互的边界。本文将系统梳理2025年AI发展的十大核心趋势,为读者揭示人工智能技术的最新发展方向及其对社会各领域的深远影响。趋势一:多模态大模型成为基础设施2025年,多模态大模型已
- 指数计算机在线使用,ffmi(在线ffmi指数计算器)
带虾条酱
指数计算机在线使用
我们可用FatFreeMassIndex(FFMI)无脂肪重量指数来做为一个衡量肌瘦肉量的基准。不像BMI会把脂肪算到重量里,FFMI在测量进展和潜力上是更有实用性的。FFMI的.彭于晏的体型用FatFreeMassIndex(FFMI)无脂肪重量指数来看应该是处于20左右,而26是不依赖药物所能达到的极限了,所以算是很不错的了。专业健美运动员都是用.首先讲一点,当年的施瓦辛格也是使用固醇类药物的
- 人类编程时代即将终结?OpenAI首席产品官预测AI将在今年底全面超越人类程序员
前端javascript
ReactHook深入浅出CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读近日,OpenAI首席产品官KevinWeil在接受采访时表示,人工智能的发展速度远超预期,今年底就有可能在编程领域永久性地超越人类程序员。这一观点立即引发了行业热议,也让程序员们对未来产生了深刻的思考。人工智能的进展速度远超想象在与VarunMayya和TanmayBhat共同主持的YouTube节目《O
- 量化AI价值的30个关键指标
mao_feng
人工智能AI
摘要:量化AI的战略价值人工智能(AI)成功集成到业务运营中超越了单纯的技术部署;它需要一种严格、可量化的方法来展示其价值。本报告系统地分类并解释了评估AI优势的基本指标,从核心模型性能到总体战略和道德考虑因素。必须制定多方面的衡量策略,将技术AI指标与运营效率、客户体验、财务绩效、战略优势和负责任的AI实践等有形业务成果直接联系起来。稳健的关键绩效指标(KPI)不仅仅是问责制的工具;它们是持续改
- 高通量多因子检测赋能胰腺癌生物标志物发现与临床转化
LabEx
Luminex液相芯片胰腺癌多因子检测斑蝥素乐备实labex科研服务
研究背景:胰腺癌作为恶性程度极高的消化系统肿瘤,其死亡率与发病率近乎持平的临床特征始终是医学领域的重大挑战。与多数癌症生存率稳步提升的趋势不同,胰腺癌的诊疗进展长期滞后——超过50%的患者确诊时已处于疾病晚期,对传统放化疗方案呈现显著耐药性。据美国2017年流行病学数据显示,胰腺癌患者5年相对生存率仅8%,尽管男性患者生存率呈现年均0.3%的微弱提升,但整体预后仍处于恶性肿瘤谱系的最底端,临床对创
- dph-framework:提升软件开发者生产力与幸福感的框架
乔昕连
dph-framework:提升软件开发者生产力与幸福感的框架dph-framework项目地址:https://gitcode.com/gh_mirrors/dp/dph-framework项目介绍在现代软件开发环境中,如何衡量和提升开发者的生产力和幸福感,是每一个技术团队都需要关注的重要问题。LinkedIn开源了dph-framework,一个专门为软件开发者设计的生产力与幸福感度量框架。这
- 2025 年 6 月底大模型产品进展与现状
AIGC前沿技术探索
大模型技术与产品前沿探索大模型
上半年,各大厂商完成了从“秀肌肉”(展示模型能力)到“上货架”(推出可用产品和平台)的关键转变。市场的讨论焦点也从“哪个模型更强”转向了“哪个产品更好用,哪个生态更完善”。以下是最新的全局态势:1.三大闭源巨头的“产品全家桶”之争竞争已经不再是单一模型的对决,而是平台级、生态级的对抗。OpenAI、Google和Anthropic的产品线都已成型,并展现出清晰的战略分野。公司(Company)核心
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象