- 《模式识别与机器学习》第一章
CS_Zero
机器学习人工智能
C1符号含义x\boldxx:向量,曲线拟合问题中的x坐标数值序列。元素个数为N。t\boldtt:向量,曲线拟合问题中的y坐标(target)数值序列。w\boldww:向量,曲线拟合问题中的待估计的参数,即M阶多项式的各阶系数。β\betaβ:标量,协方差的倒数,表示样本的精度。α\alphaα:标量,同上,曲线拟合例子中的先验的精度。多项式曲线拟合E(w)=12∑n=1N{y(xn,w)−t
- OC对象原理探索(中)-内存对齐
U东东枪
christopher-gower-m_HRfLhgABo-unsplash.jpg什么是内存对齐关于什么是内存对齐,我们通过下面一个例子来看一下需引入#import#import//LMPerson有两个成员变量:namegendarLMPerson*p=[LMPersonalloc];p.name=@"LM";p.gendar=@"男";NSLog(@"person---sizeof-----
- 【课程作业_01】国科大2023模式识别与机器学习实践作业
lzl2040
我的笔记python机器学习数据集人工智能
国科大2023模式识别与机器学习实践作业作业内容从四类方法中选三类方法,从选定的每类方法中,各选一种具体的方法,从给定的数据集中选一个数据集(MNIST,CIFAR-10,电信用户流失数据集)对这三种方法进行测试比较。第一类方法::线性方法:线性SVM、LogisticRegression第二类方法:非线性方法:KernelSVM,决策树第三类方法:集成学习:Bagging,Boosting第四类
- 999-车的可用捕获量
饮酒醉回忆
车的可用捕获量题目在一个8x8的棋盘上,有一个白色车(rook)。也可能有空方块,白色的象(bishop)和黑色的卒(pawn)。它们分别以字符“R”,“.”,“B”和“p”给出。大写字符表示白棋,小写字符表示黑棋。车按国际象棋中的规则移动:它选择四个基本方向中的一个(北,东,西和南),然后朝那个方向移动,直到它选择停止、到达棋盘的边缘或移动到同一方格来捕获该方格上颜色相反的卒。另外,车不能与其他
- 亲密关系——加]克里斯多福·孟(Christopher Moon)
WikZ_
一、随感1.刚开始读这本书的时候,以为讲的就是夫妻、爱人之间的关系,但越往后看,越发现不仅仅是夫妻、爱人,只要和对方亲密到一种程度,同事、朋友、闺蜜都算是亲密关系的一种。每个人在成长过程中都有或大或小、或多或少的创伤。你会和什么样的人建立亲密关系呢,是与你相似的和你喜欢的。你在亲密关系的伴侣中能够不断的看清楚自己,在你喜欢的人身上你能更快地成成长。作者把亲密关系的过程分为以下几个阶段:绚丽、幻灭、
- 模式识别与机器学习—PCA分析
在下雨599
模式识别复习机器学习人工智能
主成分分析将高维空间线性投影到一个低维空间,希望在这个低维空间能够表征高维空间中的绝大部分信息,即信息损失最小。关键:找到投影方向补充知识:主成分分析(PCA)目标函数1:最小化重建误差主成分分析(PCA)目标函数2:最大投影后的方差
- 2021-12-21 - 草稿
张芷璇
Part11,从本单元中我学到的最重要的理念(精读和视听说分别总结)精读:Inthewordsoftheoldsaying,thatkindnessisit'sownreward.视听说:有不同的交通方式,并且有不同的优与劣2,我在本片文章/音频/视频中学到的怦然心动的单词(精读和视听说分别总结)精读:studio工作室(画室、照相馆)cafe咖啡馆(餐馆、酒吧)bishop主教sleeve衣袖p
- 国科大模式识别与机器学习2015-2019、2021仅考题
智商欠费,不死也废
期末机器学习人工智能
2015(8)试描述线性判别函数的基本概念,并说明既然有线性判别函,为什么还需要非线性判别函数?假设有两种模式,每类包括6个4维不同的模式,且良好分布。如果他们是线性可分的。问权向量至少需要几个系数分量?假如要建立额尔茨的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变)(8分)简述偏差方差分解及其推导过程,并说明偏差、方差、噪声三部分的内在含义。(8分)试描述用EM算
- 模式识别与机器学习-半监督学习
Kilig*
机器学习机器学习学习人工智能
模式识别与机器学习-半监督学习半监督学习半监督学习的三个假设半监督学习算法自学习算法自学习的步骤:自学习的优缺点:优点:缺点:协同训练多视角学习生成模型半监督SVM谨以此博客作为复习期间的记录半监督学习半监督学习(Semi-SupervisedLearning)是机器学习的一种范式,它利用同时包含标记(有标签)和未标记(无标签)数据的数据集来进行模型训练。相比于监督学习和无监督学习,半监督学习尝试
- 模式识别与机器学习-概率图模型
Kilig*
机器学习机器学习人工智能
模式识别与机器学习-概率图模型概率图模型三大基本问题表示推断学习有向概率图模型例子三种经典的图HMMViterbi算法谨以此博客作为复习期间的记录概率图模型三大基本问题概率图模型通常涉及三个基本问题,即表示(Representation)、推断(Inference)和学习(Learning)。这三个问题是概率图模型中关键的核心概念。表示(Representation):表示问题涉及选择合适的图结构
- 模式识别与机器学习-集成学习
Kilig*
机器学习机器学习集成学习人工智能
集成学习集成学习思想过拟合与欠拟合判断方法K折交叉验证BootstrapBagging随机森林的特点和工作原理:BoostingAdaBoost工作原理:AdaBoost的特点和优点:AdaBoost的缺点:GradientBoosting工作原理:GradientBoosting的特点和优点:GradientBoosting的变种:Bagging和Boosting算法比较Bagging(Boot
- 模式识别与机器学习-无监督学习-降维
Kilig*
机器学习机器学习学习人工智能
模式识别与机器学习-无监督学习-降维为什么要降维维度选择手工移除特征过滤式选择包裹式选择嵌入式选择维度抽取(线性模型)MDSPCA目标1:最小重构误差目标2:最大投影方差SVD思考:为什么保留特征值大的?维度抽取(非线性模型)KPCA流形学习ISOMAP优点:缺点:LLET-SNE谨以此博客作为复习期间的记录为什么要降维消除冗余信息和噪声:原始数据集可能包含大量冗余特征或噪声,这些特征可能对模型训
- Actor模型与Akka Actor体系基础总结
LittleMagic
前言最近用业余时间把Flink的RPC基础设施翻了个底朝天,又与之前分析过的SparkRPC机制做了一些对比,越发觉得Actor模型甚为精妙,值得简单记录一下,顺便也可作为日后解析FlinkRPC机制的基础入门。Actor模型Actor模型由Hewitt、Bishop和Steiger在1973年通过论文《AUniversalModularActorFormalismforArtificialInt
- 模式识别与机器学习-SVM(带软间隔的支持向量机)
Kilig*
机器学习支持向量机机器学习算法
SVM(带软间隔的支持向量机)软间隔思想的由来软间隔的引入谨以此博客作为复习期间的记录。软间隔思想的由来在上一篇博客中,回顾了线性可分的支持向量机,但在实际情况中,很少有完全线性可分的情况,大部分线性可分的情况都是整体线性可分,个别样本点无法线性分割开。因此就要避免这极个别样本点对分割平面产生的影响。线性可分支持向量机软间隔的引入在分类过程中,允许极个别数据点“越界”,如何在目标函数中体现这一点呢
- 模式识别与机器学习-无监督学习-聚类
Kilig*
机器学习机器学习学习聚类
无监督学习-聚类监督学习&无监督学习K-meansK-means聚类的优点:K-means的局限性:解决方案:高斯混合模型(GaussianMixtureModels,GMM)多维高斯分布的概率密度函数:高斯混合模型(GaussianMixtureModel,GMM)模型形式:EM算法迭代过程:K-means与高斯混合模型(GMM)的对比:K-means:高斯混合模型(GMM):高斯混合模型(GM
- 模式识别与机器学习-SVM(线性支持向量机)
Kilig*
机器学习支持向量机机器学习算法
线性支持向量机线性支持向量机间隔距离学习的对偶算法算法:线性可分支持向量机学习算法线性可分支持向量机例子谨以此博客作为复习期间的记录线性支持向量机在以上四条线中,都可以作为分割平面,误差率也都为0。但是那个分割平面效果更好呢?其实可以看出,黑色的线具有更好的性质,因为如果将黑色的线作为分割平面,将会有更大的间隔距离。其中,分割平面可以用以下式子表示:wx+b=0wx+b=0wx+b=0w和bw\t
- 模式识别与机器学习-SVM(核方法)
Kilig*
机器学习机器学习支持向量机人工智能
SVM(核方法)核方法核技巧在SVM中的应用谨以此博客作为复习期间的记录核方法对解线性分类问题,线性分类支持向量机是一种非常有效的方法.但是,有时分类问题是非线性的,这时可以使用非线性支持向量机,核心思想是通过核方法将低维非线性可分数据转化为高维线性可分数据。非线性问题往往不好求解,所以希望能用解线性分类问题的方法解决这个问题.所采取的方法是进行一个非线性变换,将非线性问题变换为线性问题,通过解变
- 模式识别与机器学习第一章
露(^_^)
模式识别与机器学习python
一、模式的概念广义:存在于时间和空间中可观察的物体。如果可以区别它们是否相同或是否相似,都可以称之为模式。狭义:模式所指的不是事物本身,而是从事物获得的信息,模式往往表现为具有时间和空间分布的信息。模式的直观特性:可观察性、可区分性、相似性。二、模式识别的概念模式识别:直观,无所不在,“人以类聚,物以群分”。目的:利用计算机对物理对象进行分类,在错误概率最小的条件下,使识别的结果尽量与客观物体相符
- 模式识别与机器学习(十二):Stacking
从零开始的奋豆
模式识别与机器学习机器学习人工智能
原理在本次实验中以决策树、svm和随机森林为基学习器,以决策树为元学习器。Stacking的做法是首先构建多个不同类型的一级学习器,并使用他们来得到一级预测结果,然后基于这些一级预测结果,构建一个二级学习器,来得到最终的预测结果。Stacking的动机可以描述为:如果某个一级学习器错误地学习了特征空间的某个区域,那么二级学习器通过结合其他一级学习器的学习行为,可以适当纠正这种错误。具体步骤如下图所
- 模式识别与机器学习(十二):随机森林
从零开始的奋豆
模式识别与机器学习机器学习随机森林人工智能
原理随机森林(RandomForest,RF)是Bagging的一个扩展变体。RF在以决策树为基学习器构建Bagging集成的基础上,在决策树的训练过程中引入随机属性选择。训练每颗决策树时随机选出部分特征作为输入,所以该算法被称为随机森林算法。在RF中,对基决策树的每个结点,先从该结点的属性集合中随机选择一个包含k个属性的子集(假定有d个属性),然后再从这个子集中选择一个最优属性用于划分。参数k控
- 模式识别与机器学习-特征选择和提取
Kilig*
机器学习机器学习人工智能
模式识别与机器学习-特征选择和提取特征选择一些距离测度公式独立特征的选择准则一般特征的散布矩阵准则离散K-L变换谨以此博客作为复习期间的记录。常见分类问题的流程,数据预处理和特征选择提取时机器学习环节中最重要的两个流程。这两个环节直接决定了最终性能的上下限,本部分记录一下特征提取和选择部分(特征工程)特征选择可以表示为:从一个包含n个度量值的集合{x1,x2,…,xn}\{x_1,x_2,\dot
- 模式识别与机器学习第三章
露(^_^)
模式识别与机器学习python
一、线性判别函数1.两类问题的判别函数若这些属于ω1和ω2两类的模式可用一个直线方程d(x)=0来划分,d(x)=w1x1+w2x2+w3=0d(x)称为两类模式的判别函数;d(x)=0称为决策面/判别界面方程。用判别函数进行模式分类依赖的两个因素:(1)判别函数的几何性质:线性的和非线性的函数。(2)判别函数的系数:判别函数的形式确定后,主要就是确定判别函数的系数问题。2.n维线性判别函数的一般
- 【模式识别与机器学习】——2.2正态分布模式的贝叶斯分类器
weixin_30421809
人工智能
出发点:当已知或者有理由设想类概率密度函数P(x|ωi)是多变量的正态分布时,上一节介绍的贝叶斯分类器可以导出一些简单的判别函数。由于正态密度函数易于分析,且对许多重要的实际应用又是一种合适的模型,因此受到很大的重视。(贝叶斯分类规则是基于统计概念的。如果只有少数模式样本,一般较难获得最优的结果)正态分布模式的贝叶斯判别函数具有M种模式类别的多变量正态类密度函数为:其中,每一类模式的分布密度都完全
- 模式识别与机器学习-判别式分类器
Kilig*
机器学习人工智能
模式识别与机器学习-判别式分类器生成式模型和判别式模型的区别线性判别函数多分类情况多分类情况1多分类情况2多分类情况3例题广义线性判别函数实例分段线性判别函数Fisher线性判别感知机算法例:感知机多类别分类谨以此博客作为学习期间的记录生成式模型和判别式模型的区别生成式模型关注如何生成整个数据的分布,而判别式模型则专注于学习如何根据给定输入预测输出标签或数值。在实践中多数判别式模型要优于生成式模型
- 模式识别与机器学习(十一):Bagging
从零开始的奋豆
模式识别与机器学习机器学习
1.原理Bagging[Breiman,1996a]是井行式集成学习方法最著名的代表.从名字即可看出,它直接基于自助采样法(bootstrapsampling)。给定包含m个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得下次采样时该样本仍有可能被选中,这样,经过m次随机采样操作,我们得到含m个样本的采样集,初始训练集中有的样本在采样集里多次出现,有的则从未出现,初
- 模式识别与机器学习(十):梯度提升树
从零开始的奋豆
模式识别与机器学习机器学习人工智能
1.原理提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法。以决策树为基函数的提升方法称为提升树(boostingtree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决策树的加法模型:fM(x)=∑m=1MT(x;θm)f_M(x)=\sum_{m=1}^MT(x;\theta_m)fM(x)=m=1∑MT(x;θm)其中,T(x;θm)T(x;\
- 模式识别与机器学习(九):Adaboost
从零开始的奋豆
模式识别与机器学习机器学习人工智能
1.原理AdaBoost是AdaptiveBoosting(自适应增强)的缩写,它的自适应在于:被前一个基本分类器误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在每一轮迭代中,加入一个新的弱分类器,直到达到某个预定的足够小的错误率或预先指定的最大迭代次数再确定最后的强分类器。1.算法步骤首先,是初始化训练数据的权值分布D1。假设有N个训练样本数据,则
- 模式识别与机器学习(八):决策树
从零开始的奋豆
模式识别与机器学习机器学习决策树人工智能
1.原理决策树(DecisionTree),它是一种以树形数据结构来展示决策规则和分类结果的模型,作为一种归纳学习算法,其重点是将看似无序、杂乱的已知数据,通过某种技术手段将它们转化成可以预测未知数据的树状模型,每一条从根结点(对最终分类结果贡献最大的属性)到叶子结点(最终分类结果)的路径都代表一条决策的规则。一般,一棵决策树包含一个根节点,若干个内部结点和若干个叶结点。叶结点对应于决策结果,其他
- Bishop新著 - 深度学习:基础与概念 - 前言
Garry1248
深度学习:基础与概念深度学习人工智能AIGC
译者的话十几年前,笔者在MSRA实习的时候,就接触到了ChristopherM,Bishop的经典巨著《PatternRecogitionandMachineLearning》(一般大家简称为PRML)。Bishop大神是微软剑桥研究院实验室主任,物理出身,对机器学习的基本概念和思想解释的深入浅出,鞭辟入里。以至于这本书被当时从事机器学习和AI方向的研究者奉为圣经。许多同学如饥似渴的阅读全书,连每
- Bishop新著 - 深度学习:基础与概念 - 第一章 - 深度学习革命
Garry1248
深度学习:基础与概念深度学习人工智能机器学习
《DeepLearning:FoundationsandConcepts》系机器学习领域大神ChristopherBishop的最新力作,于2023年11月由Springer出版社出版。Bishop是微软剑桥研究实验室主任、微软技术院士(MicrosoftTechnicalFellow),爱丁堡大学计算机教授,英国皇家工程院院士,同时也是经典巨著《PatternRecogitionandMachi
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end