递归_青蛙跳台阶(变态版)

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

我的解法

public int JumpFloor1(int target) {
    if (target == 1) {
        return 1;
    } else {
        int total = 0;
        for (int i = 1; i < target; i++) {
            total += JumpFloorII(target - i);
        }
        return total+1;
    }
}

大佬的解法

① f(n) = f(n-1) + f(n-2) +f(n-3) + ... + f(2) + f(1)

② f(n-1) = f(n-2) +f(n-3) + ... + f(2) + f(1)

由①②得,f(n) = 2f(n-1);

public static int jumpFloor2(int target) {
    if (target == 1) {
        return 1;
    } else {
        return 2 * jumpFloor2(target - 1);
    }
}

终极解法

f(n) = 2f(n-1) (n>=2)
f(n) = 1 (n=1)

递归方程求解:

f( n ) = 2f( n - 1 )

​ = 2*2f( (n-1) - 1 ) = 22f( n - 2 )

​ = 2*2*2f( (n-2) - 1 ) = 23f( n - 3 )

​ =2*2*2*2......*2f( (n-(n-3)) -1) = 2n-2f( n - (n-2) ) = 2n-2f( 2 )

​ =2*2*2*2......*2f( (n-(n-2)) -1) = 2n-1f( n - (n-1) ) = 2n-1f( 1 ) = 2n-1

public int JumpFloor3(int target) {
    return (int) Math.pow(2, target - 1);
}

你可能感兴趣的:(递归_青蛙跳台阶(变态版))