《Mathematical Analysis of Algorithms》中有关“选择第t大的数”的算法分析

开头废话

这个问题是Donald.E.Knuth在他发表的论文Mathematical Analysis of Algorithms中提到的,这里对他的算法分析过程给出了更详细的解释。

问题描述:

给定一个数组a[1,2,...,n],用尽量少的比较次数找出数组中第t大的数。(假定这n个数两两不同)。

算法描述:

对于这个问题,可以很容易想到对应的算法。一个 \(O(n\log n)\) 的排序算法总能解决问题(然鹅今天我们并不对数组进行完全的排序)。
参照快速排序中的Partition操作,将元素a[i]放到某个位置\(k\),使得排在它前面的元素都比它大(但不一定按照从大到小的次序排列),后面的元素都比它小。再根据a[i]的位置\(k\)\(t\)的大小关系,缩小查找范围再对子问题求解。
对于每一次Partition操作,会有这样的3种情况:
(1).若\(k=t\),算法结束。
(2).若\(k>t\),则对a[i]~a[k-1]递归地求解
(3).若\(k,则对a[k+1]~a[j]递归地求解

时间复杂度分析

在这个问题的求解过程中,产生子问题的规模不断缩小。其中影响子问题的变量有\(n\)(数组的长度)和\(t\)(待查找的t)。Knuth记\(C_{n,t}\)为在\(n\)个元素的数组中选择第\(t\)大的数所需的平均比较次数,这里有一个前提,我们假设数组的排列是随机的,每一次Partition找到第1,第2,...,第n大的数概率均为\(\frac 1 n\)

于是我们可以得到这样的式子:

\[\begin {aligned} C_{1,1}&=0\\ C_{n,t}&=n-1+\frac 1n (A_{n,t}+B_{n,t}+0) \end {aligned} $$其中$A_{n,t}$和$B_{n,t}$的定义如下:\]

\begin {aligned}
A_{n,t}&=C_{n-1,t-1}+C_{n-2,t-2}+\cdots+C_{n-t+1,1}\
B_{n,t}&=C_{t,t}+C_{t+1,t}+\cdots+C_{n-1,t}
\end {aligned}

\[这里$A_{n,t}$对应的是递归过程中所有$kt$的情况,将数组第一项到第$k-1$项取出,看作一个新的数组,原始数组中第$t$大的数,在这新的数组中仍然是第$t$大,所以这部分的子问题是在长度为$k-1$的数组中选择第$t$大的数,其中$t+1\leq k \leq n.$ 括号内剩下的一项$0$,对应的是$k=t$的情况,因为此时算法结束,不需要再求解子问题,所以比较次数为$0.$括号外的$n-1$是一次Partition要进行的比较次数。 这样,括号内就等于所有可能规模子问题的比较次数的总和,将它乘以$\frac 1n$,就得到子问题比较次数的数学期望,即我们所求的平均情况下的预期比较次数。 通过观察我们可以得到以下的递推公式: \]

\begin {aligned}
A_{n+1,t+1}&=C_{n-1,t-1}+C_{n-2,t-2}+\cdots+C_{n-t+1,1}+C_{n,t}=A_{n,t}+C_{n,t}\
B_{n+1,t}&=C_{t,t}+C_{t+1,t}+\cdots+C_{n-1,t}+C_{n+1-1,t}=B_{n,t}+C_{n,t}
\end{aligned}

\[由上述等式作差消法,可以得到: \]

(n+1)C_{n+1,t+1}-nC_{n,t+1}-nC_{n,t}+(n-1)C_{n-1,t}\
=(n+1)n-n(n-1)-n(n-1)+(n-1)(n-2)\+(A_{n+1,t+1}-A_{n,t})-(A_{n,t+1}-A_{n-1,t})+(B_{n+1,t+1}-B_{n,t+1})-(B_{n,t}-B_{n-1,t})
\
=2+C_{n,t}-C_{n-1,t}+C_{n,t+1}-C_{n-1,t}

\[合并同类项即可得到: \]

(n+1)C_{n+1,t+1}-(n+1)C_{n,t+1}-(n+1)C_{n,t}+(n+1)C_{n-1,t}=2\\Downarrow\
C_{n+1,t+1}-C_{n,t+1}-C_{n,t}+C_{n-1,t}=\frac{2}{n+1}

\[接下来我们考察边界条件,当$t=1$时,由以上的式子我们可以得到下述方程组: \]

\left{
\begin{array}{l}
C_{n,1}= n-1+\frac{1}{n}(C_{1,1}+C_{2,1}+\cdots +C_{n-1,1})\
B_{n,1}=C_{1,1}+C_{2,1}+\cdots+C_{n-1,1}\
B_{n+1,1}=B_{n,1}+C_{n,1}\
C_{n,1}=n-1+\frac{1}{n}(B_{n,1})\
C_{n+1,1}=n+\frac{1}{n+1}(B_{n+1,1})
\end{array}
\right.

\[消去方程组中包含$B$的项,可以得到: \]

\begin{aligned}
(n+1)C_{n+1,1}-nC_{n,1} &= (n+1)n-n(n-1)+C_{n,1}\
C_{n+1,1}-C_{n,1}&=2-\frac{2}{n+1} \quad\quad(*)
\end{aligned}

\[接下来求解$C_{n,1}$: 列出方程组: \]

\left{
\begin{array}{c}
\begin{aligned}
C_{1,1}&=0\
C_{2,1}-C_{1,1}&=2-\frac22\
C_{3,1}-C_{2,1}&=2-\frac23\
\cdots\
C_{n,1}-C_{n-1,1}&=2-\frac2n\
\end{aligned}
\end{array}
\right.\

\[将以上$n$个方程求和,最终左边只剩下$C_{n,1}$,得到如下式子: \]

\begin{aligned}
C_{n,1}&=2(n-1)-2\sum_{k=2}^n \frac1k\
\quad\Downarrow
\
C_{n,1}&=2n-2\sum_{k=1}^n\frac1k=2n-2H_n
\end{aligned}

\[这里的$H_n$表示调和级数的前$n$项部分和。 由于问题具有的对称性(这部分可自行证明),$C_{n,n}=C_{n,1}=2n-2H_n$,将此式记作$(\Delta)$ 由$(*)$式,可以列出以下方程组: \]

\left{
\begin{array}{l}
(C_{n+1,t+1}-C_{n,t})-(C_{n,t+1}-C_{n-1,t})=\frac2{n+1}\
(C_{n,t+1}-C_{n-1,t})-(C_{n-1,t+1}-C_{n-2,t})=\frac2{n}\
\quad\quad\quad\quad\quad\quad\quad\quad\cdots\
(C_{t+2,t+1}-C_{t+1,t})-(C_{t+1,t+1}-C_{t,t})=\frac2{t+2}\
\end{array}
\right.\

\[再次对这$n-t$个方程累加,并联立$(\Delta)$式,可以得到: \]

\begin{aligned}
C_{n+1,t+1}-C_{n,t}&=\frac{2}{n+1}+\frac{2}{n}+\cdots+\frac{2}{t+2}+C_{t+1,t+1}-C_{t,t}\
&=2(H_{n+1}-H_{t+1})+2-\frac{2}{t+1}
\end{aligned}

\[依次写出$C_{n,t}-C_{n-1,t-1}$到$C_{2,2}-C_{1,1}$的$n-1$个方程并再次累加(过程略去),可以推出: \]

C_{n,t}=2\sum_{2\leq k\leq t}(H_{n-t+k}-H_{k}+1-\frac1k)+C_{n+1-t,1}

\[化简后: \]

C_{n,t}=2((n+1)H_n-(n+3-t)H_{n+1-t}-(t+2)H_t+n+3),\quad(1\leq t\leq n)

\[由于$t$与$n$同阶,且平均情况下$t$的数学期望$E(t)=\frac 2n$,又 $H_n=\Theta(\log n)$ ,所以: \]

C_{n,t}=O(n\log n)

\[至此,时间复杂度的证明结束。 \]

你可能感兴趣的:(《Mathematical Analysis of Algorithms》中有关“选择第t大的数”的算法分析)