Handler与内存泄漏

一、Handler机制

Handler在创建时,默认与当前所在线程的Looper绑定,也以一个线程的Looper作为参数创建Handler。一个线程只有一个对应的Looper(利用ThreadLocal来保证),Looper里有一个MessageQueue对象,handler可以将Message发送到MessageQueue中,Message进入队列中。而Looper是一个死循环,它不断的从MessageQueue中取出消息(调用MessageQueue的next方法,这时如果队头的消息延迟时间还没满,就发生阻塞),然后将这个消息分发。Message中有一个Target成员,用来绑定handler。消息分发后就会调用绑定的Handler中的dispatchMessage方法,从而调用初始化Handler时初始化的回调函数。

handler在调用sendMessage(Message msg)、post(Runnable r)等方法时,本质上最终都调用了:

sendMessageAtTime方法

/**
     * Enqueue a message into the message queue after all pending messages
     * before the absolute time (in milliseconds) uptimeMillis.
     * The time-base is {@link android.os.SystemClock#uptimeMillis}.
     * Time spent in deep sleep will add an additional delay to execution.
     * You will receive it in {@link #handleMessage}, in the thread attached
     * to this handler.
     * 
     * @param uptimeMillis The absolute time at which the message should be
     *         delivered, using the
     *         {@link android.os.SystemClock#uptimeMillis} time-base.
     *         
     * @return Returns true if the message was successfully placed in to the 
     *         message queue.  Returns false on failure, usually because the
     *         looper processing the message queue is exiting.  Note that a
     *         result of true does not mean the message will be processed -- if
     *         the looper is quit before the delivery time of the message
     *         occurs then the message will be dropped.
     */
    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

而sendMessageAtTime在进行判断MessageQueue是否为空,mQueue即为Handler所在线程或传入的Looper的mQueue,然后调用Handler的enqueueMessage(queue, msg, uptimeMillis)方法。

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

可以看到enqueueMessage方法中,将消息的target绑定了当前Handler。然后调用MessageQueue中的消息队列的enqueueMessage方法。

于是来看MessageQueue的enqueueMessage方法:

boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

主要逻辑就是根据消息的when(即时间),来插入消息队列。消息队列是一个链表的结构,因此要将被插入的消息按照时间顺序插入合适的位置,也就是前面的时间比它前,后面的时间比它大的位置。

这样消息就进入了消息队列中。

再来看Looper的Loop函数。(关于Looper的loop死循环为什么不阻塞线程,与Linux系统的epoll机制有关,笔者目前还不是很了解)

public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

注意看Message msg = queue.next()这一句代码,官方注释里说,这是可能阻塞的,也就是链表头时间还没到时出现的阻塞情况。我们看MessageQueue的next方法怎么实现的:

Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

代码比较长,将主要逻辑抽取出来,是这样的:

Message next() {
  ...
 for (;;) {   
    //说明消息头还在准备
    if (nextPollTimeoutMillis != 0) {
         Binder.flushPendingCommands();
    }
    ...
    取出队列头msg
   if (msg != null) {
     if(当前消息没准备好){
       nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
     }
     else{
       改变链表头
       返回msg。
     }

   } else{
     // No more messages.
     nextPollTimeoutMillis = -1;
   }

}

所以next方法是might block的,因为有可能阻塞在了for循环处。

接下来loop方法终于取出消息后,调用msg.target.dispatchMessage(msg);就分发了消息

于是回到Handler中,查看dispatchMessage(msg)函数:

 public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
 }

如果这个Message有绑定的Callback,就去handleCallback函数

  private static void handleCallback(Message message) {
        message.callback.run();
  }

其实就是调用了消息的回调,跑起来了

如果消息里没有绑定Callback,就调用Handler自身的Callback(比如初始化Handler时构造函数中传入的Callback)。handleMessage(msg)函数是空的,给Handler的子类来实现的,匿名内部类重写的也是这个方法。

二、内存泄漏

在我们像下面这样声明Handler时:


package com.meituan.huangdanyang.practise;

import android.os.Handler;
import android.os.Message;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

    private Handler handler = new Handler(){
        @Override
        public void handleMessage(Message message){

        }

    };
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        //TextView textView = findViewById(R.id.textView);

        Log.i("测试","新分支");
        handler.sendMessageDelayed(Message.obtain(),100000);
    }

}

编译器会给出黄色,警告信息为:

屏幕快照 2018-07-18 下午3.59.20.png

警告里说得很清楚了,因为这个Handler是作为一个内部类被声明的,它可能阻止外部类被gc回收掉。如果这个Handler使用的是主Looper以外的Looper,就没有这个问题,否则,你需要修改你的声明。

之前已经介绍了Handler的基本机制,那我们知道,如果使用handler post了一个delay的消息到了MessageQueue中,在消息被处理前,不会被释放,于是就形成了一个MessageQueue->Message->Handler->Activity这样一个引用链,导致Activity无法释放。

将上面的代码运行之后,用LeakCanary检测内存泄漏,结果发现确实如此:

Handler与内存泄漏_第1张图片
屏幕快照 2018-07-18 下午4.15.22.png

所以,用匿名内部类的方式声明Handler,确实容易造成内存泄漏。在有后台线程处理网络请求的时候,它没完成,就会一直持有Handler的引用。如果在退出Activity的同时关掉后台线程,那么就相当于释放了Handler的引用,就可以避免内存泄漏。如果Handler是被delay的Message持有了引用,那么使用相应的Handler的removeCallbacks()方法,把消息对象从消息队列移除就行了。

那么如何声明一个安全的Handler呢?按照提示,我们可以声明一个静态内部类的Handler,因为静态内部类不会持有外部类的引用。于是我们自己写一个继承自Handler的静态内部类:


package com.meituan.huangdanyang.practise;

import android.os.Handler;
import android.os.Message;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

    private Handler handler = new MyHandler();
    public static class MyHandler extends Handler{
        @Override
        public void handleMessage(Message message){

        }
    }
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        //TextView textView = findViewById(R.id.textView);

        Log.i("测试","新分支");
        handler.sendMessageDelayed(Message.obtain(),100000);
    }

}

这样确实没有内存泄漏了,可我们也没办法操作Activity里的view了或修改其他非静态变量了。

所以我们可以给静态内部handler类传入一个Activity的弱引用:


package com.meituan.huangdanyang.practise;

import android.os.Handler;
import android.os.Message;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;

import java.lang.ref.WeakReference;

public class MainActivity extends AppCompatActivity {
    public TextView textView;
    private Handler handler = new MyHandler(new WeakReference(this));
    public static class MyHandler extends Handler{
        private WeakReference appCompatActivity;
        public MyHandler(WeakReference appCompatActivity){
            this.appCompatActivity = appCompatActivity;
        }
        @Override
        public void handleMessage(Message message){
            if(appCompatActivity.get()!=null){
                appCompatActivity.get().textView.setText("lalala");
            }
        }
    }
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        textView = findViewById(R.id.textView);
        handler.sendMessageDelayed(Message.obtain(),10000);
    }

    public void test(){
        Log.i("测试","Handler");
    }
}

这样既不会内存泄漏,又可以操纵MainActivity了

你可能感兴趣的:(Handler与内存泄漏)