我们已经分析了,mWindowSession.addToDisplay 通过WMS.addWindow 我们建立了app与SurfaceFlinger服务连接。并且通过requestLayout中的relayoutWindow, app请求SurfaceFlinger创建了Surface。那么接下来,我们再分析下app的视图是如何被绘制到GraphicFrame上的。这里面牵扯到的View、Canvas与Surface的关系,用这篇文章来梳理一下。(流程走的是软件绘制流程)
之前我们讲到requestLayout,开始了view的measure、layout、draw流程,我们从performDraw开始关注下最后的视图绘制工作:
//ViewRootImpl
private void performDraw() {
...
draw(fullRedrawNeeded);
...
}
然后看ViewRootImpl的draw方法:
//ViewRootImpl
private void draw(boolean fullRedrawNeeded) {
Surface surface = mSurface;
...
if (!drawSoftware(surface, mAttachInfo, xOffset, yOffset, scalingRequired, dirty)) {
return;
}
...
}
这里我们看到,surface 在这里被接收了,并传入了drawSoftware。
//ViewRootImpl
private boolean drawSoftware(Surface surface, AttachInfo attachInfo, int xoff, int yoff,
boolean scalingRequired, Rect dirty) {
// Draw with software renderer.
final Canvas canvas;
canvas = mSurface.lockCanvas(dirty); //1.获取Canvas
...
mView.draw(canvas); //2.通过Canvas绘制视图
...
surface.unlockCanvasAndPost(canvas); //3.绘制结束
}
在drawSoftware方法中,我们重点关注如上三个方法:
一、 Surface的lockCanvas函数
//Surface
public Canvas lockCanvas(Rect inOutDirty)
throws Surface.OutOfResourcesException, IllegalArgumentException {
synchronized (mLock) {
checkNotReleasedLocked();
if (mLockedObject != 0) {
throw new IllegalArgumentException("Surface was already locked");
}
mLockedObject = nativeLockCanvas(mNativeObject, mCanvas, inOutDirty);
return mCanvas;
}
}
其最终调用了native函数nativeLockCanvas
//android_view_Surface.cpp
static jlong nativeLockCanvas(JNIEnv* env, jclass clazz,
jlong nativeObject, jobject canvasObj, jobject dirtyRectObj) {
sp surface(reinterpret_cast(nativeObject));
...
ANativeWindow_Buffer outBuffer;
//从SurfaceFlinger中申请内存buffer
status_t err = surface->lock(&outBuffer, dirtyRectPtr);
...
SkImageInfo info = SkImageInfo::Make(outBuffer.width, outBuffer.height,
convertPixelFormat(outBuffer.format),
outBuffer.format == PIXEL_FORMAT_RGBX_8888 ?
kOpaque_SkAlphaType : kPremul_SkAlphaType);
//新建了一个SkBitmap,并进行了一系列设置
SkBitmap bitmap;
ssize_t bpr = outBuffer.stride * bytesPerPixel(outBuffer.format);
bitmap.setInfo(info, bpr);
if (outBuffer.width > 0 && outBuffer.height > 0) {
bitmap.setPixels(outBuffer.bits);
} else {
// be safe with an empty bitmap.
bitmap.setPixels(NULL);
}
Canvas* nativeCanvas = GraphicsJNI::getNativeCanvas(env, canvasObj);
//把这个bitmap放入Canvas中
nativeCanvas->setBitmap(bitmap);
...
sp lockedSurface(surface);
lockedSurface->incStrong(&sRefBaseOwner);
return (jlong) lockedSurface.get();
}
这里主要关注几个点:
1.1 surface->lock(&outBuffer, dirtyRectPtr)
调用了Surface的lock函数实际上主要是调用了Surface的dequeueBuffer,而这个函数的主要目的是从SurfaceFlinger中申请GraphicBuffer, 这个buffer是用来传递绘制的元数据的。
1.2 GraphicsJNI::getNativeCanvas(env, canvasObj)
构造一个native的Canvas对象(SKCanvas),再返回这个Canvas对象,java层的Canvas对象其实只是对SKCanvas对象的一个简单包装,所有绘制方法都是转交给SKCanvas来做。
1.3 SkBitmap bitmap
Canvas底层是通过2D图形引擎skia进行图形绘制的,SkBitmap是skia中很重要的一个类,很多画图动作涉及到SkBitmap,它封装了与位图相关的一系列操作。那么在这里,bitmap对下设置了获取的内存buffer,对上关联了Canvas ,即把这个bitmap放入了Canvas中( nativeCanvas->setBitmap(bitmap) )
总结:Surface的lockCanvas函数会通过jni调用对应的native方法,本质是通过Surface的dequeueBuffer获取一块用于存放绘制元数据的GraphicBuffer,然后构造一个SKBitmap,它是绘制的核心, 对下关联buffer,对上关联canvas。
二、mView.draw(canvas)
这其实就是通过Canvas去实现具体的绘制。
以TextView的一部分绘制代码为例:
protected void onDraw(Canvas canvas) {
...
if (dr.mShowing[Drawables.LEFT] != null) {
canvas.save();//坐标系的原点,坐标轴方向的信息。
canvas.translate(scrollX + mPaddingLeft + leftOffset,
scrollY + compoundPaddingTop +
(vspace - dr.mDrawableHeightLeft) / 2);
dr.mShowing[Drawables.LEFT].draw(canvas);
canvas.restore();//恢复Canvas之前保存的状态
}
...
}
主要看绘制:
//Canvas.java
public void translate(float dx, float dy) {
native_translate(mNativeCanvasWrapper, dx, dy);
}
//android_graphics_Canvas.cpp
static void translate(JNIEnv*, jobject, jlong canvasHandle, jfloat dx, jfloat dy) {
get_canvas(canvasHandle)->translate(dx, dy);
}
//external/skia/src/core/SkCanvas.cpp
void SkiaCanvas::translate(float dx, float dy) {
mCanvas->translate(dx, dy);
}
//external/skia/src/core/SkCanvas.cpp
void SkCanvas::translate(SkScalar dx, SkScalar dy) {
if (dx || dy) {
this->checkForDeferredSave();
fMCRec->fMatrix.preTranslate(dx,dy);
// Translate shouldn't affect the is-scale-translateness of the matrix.
SkASSERT(fIsScaleTranslate == fMCRec->fMatrix.isScaleTranslate());
FOR_EACH_TOP_DEVICE(device->setGlobalCTM(fMCRec->fMatrix));
this->didTranslate(dx,dy);
}
}
从SkCanvas.cpp的路径我们可以看出,这已经在skia绘制引擎部分,这里就不深究了。只要了解:我们通过java层Canvas封装的api调用底层SKCanvas来完成真正的绘制工作就足够了。
三、surface.unlockCanvasAndPost(canvas);
//Surface.java
public void unlockCanvasAndPost(Canvas canvas) {
synchronized (mLock) {
checkNotReleasedLocked();
if (mHwuiContext != null) {
mHwuiContext.unlockAndPost(canvas);
} else {
unlockSwCanvasAndPost(canvas);
}
}
}
正常是调用unlockSwCanvasAndPost:
//Surface.java
private void unlockSwCanvasAndPost(Canvas canvas) {
if (canvas != mCanvas) {
throw new IllegalArgumentException("canvas object must be the same instance that "
+ "was previously returned by lockCanvas");
}
if (mNativeObject != mLockedObject) {
Log.w(TAG, "WARNING: Surface's mNativeObject (0x" +
Long.toHexString(mNativeObject) + ") != mLockedObject (0x" +
Long.toHexString(mLockedObject) +")");
}
if (mLockedObject == 0) {
throw new IllegalStateException("Surface was not locked");
}
try {
nativeUnlockCanvasAndPost(mLockedObject, canvas);
} finally {
nativeRelease(mLockedObject);
mLockedObject = 0;
}
}
往下看native方法
//android_view_Surface.cpp
static void nativeUnlockCanvasAndPost(JNIEnv* env, jclass clazz,
jlong nativeObject, jobject canvasObj) {
sp surface(reinterpret_cast(nativeObject));
if (!isSurfaceValid(surface)) {
return;
}
// detach the canvas from the surface
Canvas* nativeCanvas = GraphicsJNI::getNativeCanvas(env, canvasObj);
nativeCanvas->setBitmap(SkBitmap());
// unlock surface
status_t err = surface->unlockAndPost();
if (err < 0) {
doThrowIAE(env);
}
}
看下如何解锁surface:
//Surface.cpp
status_t Surface::unlockAndPost()
{
if (mLockedBuffer == 0) {
ALOGE("Surface::unlockAndPost failed, no locked buffer");
return INVALID_OPERATION;
}
int fd = -1;
status_t err = mLockedBuffer->unlockAsync(&fd);//通过Gralloc模块,最后是操作的ioctl
ALOGE_IF(err, "failed unlocking buffer (%p)", mLockedBuffer->handle);
err = queueBuffer(mLockedBuffer.get(), fd);
ALOGE_IF(err, "queueBuffer (handle=%p) failed (%s)",
mLockedBuffer->handle, strerror(-err));
mPostedBuffer = mLockedBuffer;
mLockedBuffer = 0;
return err;
}
我们看到了queueBuffer函数, 而在Surface的queueBuffer函数中调用了如下函数:
mGraphicBufferProducer->queueBuffer
这个函数最终会将BufferItem的buffer清除,通知消费者的onFrameAvailable接口。然后消费者可以根据mSlots的序号再来拿buffer。
//frameworks/native/libs/gui/BufferQueueProducer.cpp
status_t BufferQueueProducer::queueBuffer(int slot,
const QueueBufferInput &input, QueueBufferOutput *output) {
...
item.mGraphicBuffer.clear();
item.mSlot = BufferItem::INVALID_BUFFER_SLOT;
// Call back without the main BufferQueue lock held, but with the callback
// lock held so we can ensure that callbacks occur in order
{
Mutex::Autolock lock(mCallbackMutex);
while (callbackTicket != mCurrentCallbackTicket) {
mCallbackCondition.wait(mCallbackMutex);
}
if (frameAvailableListener != NULL) {
frameAvailableListener->onFrameAvailable(item);
} else if (frameReplacedListener != NULL) {
frameReplacedListener->onFrameReplaced(item);
}
++mCurrentCallbackTicket;
mCallbackCondition.broadcast();
}
...
}
所以整个过程看起来还是比较简单的。最后把整个流程再简单总结下,View、Canvas与Surface的关系也就一目了然了:
Surface通过dequeueBuffer流程(具体操作在此不多赘述)获取一块存放绘制数据的buffer。
View 在onDraw的时候,通过传入的Canvas进行绘制。(这里只是一个绘制的入口而已,本文是针对requestLayout流程来讲述的,当然你单独用Canvas实现绘制也是一样的)。
调用java层的CanvasAPI,实际真正负责绘制工作的是底层的Skia引擎,这里核心类包括SKCanvas(画家)以及SKBitmap(画布),绘制好的内容放入Surface 通过dequeueBuffer获取到的GraphicBuffer。
绘制完毕后,Surface通过queueBuffer将存放好绘制数据的buffer投递到队列中,并通知SurfaceFlinger消费。
参考:
https://blog.csdn.net/kc58236582/article/details/52879698
https://blog.csdn.net/jianpan_zouni/article/details/77649271