大致题意:
给出一个有向带权图,设1为源点,n为汇点。现在要在2~n-1的点中加上一条容量为无穷的边使得这个图的最小割最大。求加上这条边后最小割最大是多少。
大致思路:
先对原图求一遍最小割,割值为maxflow,在残余网络中分别找到两个点a,b,使得从1点到a的最大流值最大,为flowA,从b点到n点的最大流最大,为flowB。然后用maxflow+min(flowA,flowB)得到的就是答案。
#include<iostream> #include<cstring> #include<cstdio> #include<cmath> using namespace std; class node{ public: int u,v,next; int c; int cnm; };node edge[200050]; int ne, head[1000]; int cur[1000], ps[1000], dep[1000],n,m,ans,cnts,cntt; bool f[1000],ff[1000]; const int inf=90000000; void addedge(int u, int v,int c){ // dinic的加边,还是有点不同的。 edge[ne].u = u; edge[ne].v = v; edge[ne].c = c; edge[ne].next = head[u]; edge[ne].cnm=ne+1; head[u] = ne ++; edge[ne].u = v; edge[ne].v = u; edge[ne].c =0; edge[ne].next = head[v]; edge[ne].cnm=ne-1; head[v] = ne ++; } int dinic(int s, int t){ // dinic模板:源点为s,汇点为t int tr, res = 0; int i, j, k, f, r, top; while(1){ memset(dep, -1, sizeof(dep)); for(f = dep[ps[0]=s] = 0, r = 1; f != r;) for(i = ps[f ++], j = head[i]; j; j = edge[j].next) if(edge[j].c && dep[k=edge[j].v] == -1){ dep[k] = dep[i] + 1; ps[r ++] = k; if(k == t){ f = r; break; } } if(dep[t] == -1) break; memcpy(cur, head, sizeof(cur)); i = s, top = 0; while(1){ if(i == t){ for(tr = inf, k = 0; k < top; k ++) if(edge[ps[k]].c < tr) tr = edge[ps[f=k]].c; for(k = 0; k < top; k ++){ edge[ps[k]].c -= tr; edge[ps[k]^1].c += tr; } i = edge[ps[top=f]].u; res += tr; // } for(j = cur[i]; cur[i]; j = cur[i] = edge[cur[i]].next) if(edge[j].c && dep[i]+1 == dep[edge[j].v]) break; if(cur[i]){ ps[top ++] = cur[i]; i = edge[cur[i]].v; // }else{ if(top == 0) break; dep[i] = -1; i = edge[ps[-- top]].u; } } } return res; } void dfs1(int v){ // cout<<"v1 "<<v<<endl; f[v] = 1; cnts++; for(int i = head[v]; i != 0; i = edge[i].next){ int vs=edge[i].v; if(f[vs]==0&&edge[i].c) dfs1(vs); } } void dfs2(int v){ // cout<<"v2 "<<v<<endl; ff[v] = 1; cntt++; for(int i = head[v]; i != 0; i =edge[i].next){ int vs=edge[i].v; if(ff[vs]==0&&edge[edge[i].cnm].c) dfs2(vs); } } int aaa[100001]; int main(){ int i,j,cas,a,b,c,maxflow; scanf("%d",&cas); while(cas--){ ne=2; maxflow=0; cnts=cntt=0; memset(head,0,sizeof(head)); scanf("%d%d",&n,&m); while(m--){ scanf("%d%d%d",&a,&b,&c); addedge(a,b,c); } maxflow=dinic(1,n); memset(f,0,sizeof(f)); memset(ff,0,sizeof(ff)); dfs1(1); dfs2(n); int a1=0,a2=0; for(i=2;i<ne;i++){ aaa[i]=edge[i].c; // cout<<i<<" edge "<<edge[i].c<<endl; } for(i=2;i<n;i++){ if(f[i]){ for(j=2;j<ne;j++){ edge[j].c=aaa[j]; // cout<<j<<" edge "<<edge[j].c<<endl; } a1=max(a1,dinic(1,i)); // cout<<"a1 "<<a1<<endl; } if(ff[i]){ for(j=2;j<ne;j++){ edge[j].c=aaa[j]; // cout<<j<<" edge "<<edge[j].c<<endl; } a2=max(a2,dinic(i,n)); // cout<<"a2 "<<a2<<endl; } } cout<<maxflow+min(a1,a2)<<endl; } return 0; }