Leetcode: 5 Longest Palindromic Substring 最长回文子串

Discription:

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.

Example:

Input: “babad”

Output: “bab”

Note: “aba” is also a valid answer.

Example:

Input: “cbbd”

Output: “bb”

分析

求一个字符串的最长回文子串,子串必须得是连续的,不是子序列。暴力方法就不想了,处理回文串的一种方法是dp动态规划。
dp[i][j]记录给定字符串i-j是否是回文子串,若是记为1,;否则为0
则:
dp[i][j]=(s[i]==s[j]&&dp[i+1][j-1])
也就是将全部dp先初始化为0,然后所有的长度为1的子串肯定为1.也就是dp[i][i]=1;
然后查长度为2的子串:若s[i]==s[i+1]则dp[i][i+1]=1;
然后遍历三个及以上长度的子串,开始为i,末端索引j=i+k-1 (k为子串长度)
用st,en分别记录子串开始和尾端索引,输出即可

代码

   string longestPalindrome(string s) {
        int len = s.size();
    if (len <= 1)return s;
    int st=0, en=0,l;//l记录最长回文子串长度,本题用不着
    bool dp[1001][1001];
    memset(dp, 0, sizeof(dp));
    for (int i = 0; i<len; i++)
    {
        dp[i][i] = 1;
    }
    for (int i = 0; i<len - 1; i++)
    {
        if (s[i] == s[i + 1])
        {
            dp[i][i + 1] = 1;
            l = 2;
            st = i; en = i + 1;
        }
    }

    for (int k = 3; k <= len; k++)
    {
        for (int i = 0; i + k - 1<len; i++){
            int j = i + k - 1;//右端索引
            if (s[j] == s[i] && dp[i + 1][j - 1])
            {
                dp[i][j] = 1;
                l = k;
                st = i; en = j;
            }
        }
    }
    string ans = "";
    for (int k = st; k <= en; k++)
    {
        ans += s[k]; 
    }
    return ans;
    }

注意

st en一开始就要初始化,否则可能在最后遍历st-en时运行时错误

你可能感兴趣的:(算法,leetcode)