- opencv轮廓近似,模板匹配
富士达幸运星
opencv人工智能计算机视觉
在图像处理领域,轮廓近似和模板匹配是两种非常关键的技术,它们广泛应用于计算机视觉、图像分析和图像识别等多个方面。本文将详细介绍如何使用OpenCV库进行轮廓近似和模板匹配,并给出具体的代码示例。一、轮廓近似(ContourApproximation)轮廓近似是指将图像中的轮廓逼近成由直线段组成的多边形或其他简单形状,以减少轮廓的复杂度和数据量。OpenCV提供了cv2.approxPolyDP()
- 数字图像处理 - 形态学腐蚀
HelloZEX
数字图像处理C++图像处理opencv形态学处理
一、理论与概念讲解——从现象到本质1.1形态学概述形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构。而我们图像处理中指的形态学,往往表示的是数学形态学。下面一起来了解数学形态学的概念。数学形态学(Mathematicalmorphology)是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀和膨胀、
- 线性代数在卷积神经网络(CNN)中的体现
科学的N次方
人工智能线性代数cnn人工智能
案例:深度学习中的卷积神经网络(CNN)在图像识别领域,卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一个广泛应用深度学习模型,它在人脸识别、物体识别、医学图像分析等方面取得了显著成效。CNN中的核心操作——卷积,就是一个直接体现线性代数应用的例子。假设我们正在训练一个用于识别猫和狗的图像分类器,原始输入是一幅RGB彩色图片,可以将其视为一个高度、宽度和通道数(R
- 2020-04-04
奋斗中的小强
SAN:Scale-AwareNetworkforSemanticSegmentationofHigh-ResolutionAerialImages高分辨率航空图像具有广泛的应用,如军事探索和城市规划。语义分割是高分辨率航空图像分析中广泛使用的一种基本方法。然而,高分辨率航空影像地物具有尺度不一致的特征,这一特征往往会导致预测结果的不确定性。为了解决这个问题,我们提出了一个新的尺度感知模块(SAM
- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- DDE红外图像增强
烟雨_潇潇
一直忙于手上的工作,没有及时总结,今天抽几分钟时间,将最近DDE红外图像增强的试验结果分享下。具体的实现过程,会在后面的博文中进行详细的说明、论证。有车的照片没白天所拍照片,其余2张为晚上8点所拍照片,另因工作需要,先进行算法部分,两点校正和盲元填充放后面做,且手上探测器库存4年之久,光学镜头也不是特别好,所以图片中盲元较多。从图像分析,以图片中倒车的车为例,细节纹理非常明显,结果表明4x4的cl
- OpenCV中的边缘检测技术及实现
superdont
计算机视觉opencv人工智能计算机视觉python矩阵图像处理经验分享
介绍:边缘检测是计算机视觉中非常重要的技术之一。它用于有效地识别图像中的边缘和轮廓,对于图像分析和目标检测任务至关重要。OpenCV提供了多种边缘检测技术的实现,本博客将介绍其中的两种常用方法:Canny边缘检测和Sobel边缘检测。理论介绍:1.Canny边缘检测:Canny边缘检测是一种经典的边缘检测算法,它被广泛应用于图像处理领域。该方法结合了多个步骤,包括高斯滤波、计算梯度、非最大值抑制和
- 六、图像的几何变换
云峰天际
计算机视觉人工智能opencv人工智能计算机视觉
文章目录前言一、镜像变换二、缩放变换前言在计算机视觉中,图像几何变换是指对图像进行平移、旋转、缩放、仿射变换和镜像变换等操作,以改变图像的位置、尺寸、形状或视角,而不改变图像的内容。这些变换在图像处理、模式识别、机器人视觉、医学影像处理等领域具有广泛的应用。通过图像几何变换,可以实现图像的校正、配准、增强和重建等功能,为后续的图像分析和理解提供了重要的基础。一、镜像变换水平镜像(水平翻转)其原理是
- Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络
AI浩
高质量人类CV论文翻译深度学习人工智能计算机视觉
摘要在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积操作在捕获局部特征方面表现出色,而后者则通过利用自注意力机制实现了出色的全局上下文理解。然而,这两种架构在有效建模医学图像中的长距离依赖关系时都存在局限,这对于精确分割至关重要。受到Mamba架构的启发,该架构因其处理长序列和全局上下文信息的能力以及作为国家空间模型(SSM)的增强计算
- python 人脸检测器
laocooon523857886
计算机视觉opencv图像处理
importcv2#加载人脸检测器关键文件haarcascade_frontalface_default.xmlface_cascade=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')#读取图像分析图片ren4.pngimage=cv2.imread('ren4.png')gray=cv2.cvtColor(image,cv
- 课程大纲:图像处理中的矩阵计算
superdont
计算机视觉图像处理矩阵人工智能
课程名称:《图像处理中的矩阵计算》课程简介:图像处理中的矩阵计算是图像分析与处理的核心部分。本课程旨在教授学员如何应用线性代数中的矩阵计算,以实现各种图像处理技术。我们将通过强调实际应用和实践活动来确保学员能够理解和掌握这些概念。课程大纲:第1章:矩阵计算基础矩阵及其表示方式矩阵四则运算单位矩阵和逆矩阵矩阵的转置线性系统和矩阵的求解(高斯消元法)第2章:图像表示和颜色空间数字图像的矩阵表示灰度图像
- 基于拉普拉斯金字塔的高分辨率眼底图像视网膜血管实时分割matlab仿真
fpga和matlab
MATLAB板块2:图像-特征提取处理拉普拉斯金字塔高分辨率眼底图像视网膜血管实时分割matlab
目录1.拉普拉斯金字塔原理2.基于拉普拉斯金字塔的血管分割方法3.MATLAB程序3.实验结果与分析视网膜血管分割是眼底图像分析中的关键步骤,对于诊断视网膜病变等眼部疾病具有重要意义。本文提出了一种基于拉普拉斯金字塔的高分辨率眼底图像视网膜血管实时分割方法。该方法首先利用拉普拉斯金字塔对眼底图像进行多尺度分解,然后在不同尺度上提取血管特征,并通过融合多尺度信息实现血管的精确分割。眼底图像是诊断眼部
- Ps:统计
MediaTea
Ps菜单:文件/脚本/统计Scripts/Statistics统计Statistics脚本命令提供了一种高效的方法来处理和分析大量图像,使用户能够自动执行复杂的图像分析任务,并在多个图像间应用统计学方法。这个功能极大地扩展了Photoshop在科学研究、图像编辑和其他领域的应用潜力。◆◆◆使用方法与技巧相对于“将文件载入堆栈”脚本命令,“统计”脚本命令不仅可以将多个图像文件载入为同一文档中的不同图
- Coreline Soft x Incredibuild
Incredibuild
C++DevOpsc++devopswindows
关于CorelineSoftCorelineSoft是一家专注于先进医疗人工智能成像软件技术的上市公司,致力于提高疾病诊断的准确性和效率。Corelinesoft成立于2012年,总部位于韩国首尔,目前CorelineSoft业务已向全球范围内扩展,在德国法兰克福和美国乔治亚州亚特兰大设有办事处。CorelineSoft的核心旗舰产品是AVIEW,一款创新性的人工智能技术驱动的医疗图像分析软件。A
- OpenCV 笔记(19):霍夫直线检测
Java与Android技术栈
opencv笔记计算机视觉人工智能
1.霍夫空间和霍夫变换1.1霍夫空间霍夫空间(Houghspace)是一种用于图像分析的特征空间,用于描述图像中具有相同形状的线段或曲线。霍夫空间是指将图像空间中的点映射到参数空间后形成的空间。参数空间的维度由形状的描述参数的个数决定。例如,对于直线检测,参数空间的维度为2,其中一个维度表示直线的斜率,另一个维度表示直线的截距。对于圆检测,参数空间的维度为3,这三个参数分别是圆心坐标和圆的半径。霍
- 机器学习系列——(十九)层次聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在机器学习和数据挖掘领域,聚类算法是一种重要的无监督学习方法,它试图将数据集中的样本分组,使得同一组内的样本相似度高,不同组间的样本相似度低。层次聚类(HierarchicalClustering)是聚类算法中的一种,以其独特的层次分解方式,在各种应用场景中得到广泛应用,如生物信息学、图像分析、社交网络分析等。一、概述层次聚类算法主要分为两大类:凝聚的层次聚类(AgglomerativeHie
- 机器学习系列——(十七)聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在当今数据驱动的时代,机器学习已经成为了解锁数据潜能的关键技术之一。其中,聚类作为机器学习领域的一个重要分支,广泛应用于数据挖掘、模式识别、图像分析等多个领域。本文旨在深入探讨聚类技术的原理、类型及其应用,为读者提供一个全面而深入的了解。一、什么是聚类?聚类是一种无监督学习(UnsupervisedLearning)技术,它的目标是将相似的对象分组到一起,形成簇(Cluster)。与有监督学习
- 二值图像分析:轮廓形状逼近与拟合
stdcoutzrh
OpenCV与Qt轮廓逼近
二值图像分析:轮廓形状逼近与拟合1.二值图像轮廓逼近1.1轮廓逼近函数1.2轮廓逼近算法原理分析2.代码实践3.最小外接圆拟合4.最大内接圆拟合4.1点轮廓位置测试函数4.2获取轮廓最大内接圆1.二值图像轮廓逼近1.1轮廓逼近函数在[二值图像分析:二值图像轮廓提取],通过findContours()函数可以找到二值图像中的轮廓信息。对图像二值图像的每个轮廓,OpenCV提供了一个函数approxP
- 图像处理入门:OpenCV的基础用法解析
kadog
ByGPT图像处理opencv人工智能计算机视觉
图像处理入门:OpenCV的基础用法解析引言OpenCV的初步了解深入理解OpenCV:计算机视觉的开源解决方案什么是OpenCV?OpenCV的主要功能1.图像处理2.图像分析3.结构分析和形状描述4.动态分析5.三维重建6.机器学习7.目标检测OpenCV的应用场景OpenCV的安装基本图像操作图像的读取与显示图像的基本信息图像的保存图像处理技巧图像转换边缘检测特征检测与匹配引言OpenCV(
- Swin-Unet: Unet-like Pure Transformer forMedical Image Segmentation(用于医学图像分割的纯U型transformer)
我在努力学习分割(禁止说我水平差)
transformer深度学习人工智能1024程序员节
本文的翻译是参考的:[Transformer]Swin-Unet:Unet-likePureTransformerforMedicalImageSegmentation_unet-likepuretransformer-CSDN博客方便自己学习摘要:在过去的几年中,卷积神经网络(cnn)在医学图像分析方面取得了里程碑式的进展。特别是基于u型结构和跳跃连接的深度神经网络在各种医学图像任务中得到了广泛
- [AIGC] 计算机视觉(CV)技术的优势:
程序员三木
AIAIGC计算机视觉人工智能
计算机视觉(CV)技术的优势:高效性:计算机视觉技术可以快速地处理大量的图像和视频数据,比人类更高效。它可以在短时间内完成复杂的图像分析和对象识别任务。可靠性:相对于人类,计算机视觉技术可以提供更加准确和一致的结果。它可以消除人为因素的干扰,从而提高数据处理和分析的可靠性。自动化:计算机视觉技术可以实现自动化的图像处理和分析,无需人工干预。这可以大幅度提高工作效率,并减少人力成本。大规模处理:计算
- OpenCV4图像处理--二值图像联通组件扫描
Mzcc_bbms
OPENCV
联通组件扫描图像联通组件标记概念扫描联通组件的常见算法思考图像联通组件标记概念图像联通组件(CCL)四领域与八领域扫描联通组件的常见算法概念联通组件标记算法(connectedcomponentlabelingalgorithm)是图像分析中最常用的算法之一,算法的实质是扫描二值图像的每个像素点,对于像素值相同的而且相互连通分为相同的组(group),最终得到图像中所有的像素连通组件。扫描的方式可
- 小目标识别方法
LittroInno
人工智能目标识别
小目标识别是计算机视觉和人工智能领域中的一个重要研究方向,主要关注于如何有效地从图像或视频中识别尺寸较小、分辨率低的目标。这一任务在军事侦察、遥感图像分析、无人机监控、医学成像等多个领域有着广泛的应用。随着深度学习技术的发展,小目标识别的研究也取得了显著的进步。小目标识别面临的挑战主要包括目标尺寸小、易受背景干扰、目标特征不明显等问题。为了解决这些问题,研究者们提出了多种基于人工智能的方法,尤其是
- 数字图像处理 阮秋琦 期末复习 #1 绪论及正交变换
11egativ1ty
数字图像处理学计算机视觉人工智能
考试范围:第三章图像处理中的正交变换第四章图像增强第五章图像编码第六章图像复原第八章图像分析绪论图像是一种数据结构,笼统来说是一个二维矩阵,每一个点的信息共同组成了视觉平面数字图像处理的方法根据上文,数字图像处理的第一种方案是空域法,因为它们是在图像的空间域(spatialdomain)中操作的。空域是指图像的像素空间,也就是图像中每个像素的位置和像素值的空间布局。因此,空域法是直接在图像的原始表
- OpenCV简介、导入及图像处理基础方法讲解(图文解释 附源码)
showswoller
数据分析与可视化计算机视觉opencv图像处理计算机视觉人工智能python
需要源码和图片集请点赞关注收藏后评论区留言私信~~~一、OpenCV简介在计算机视觉项目的开发中,OpenCV作为较大众的开源库,拥有了丰富的常用图像处理函数库,采用C/C++语言编写,可以运行在Linux/Windows/Mac等操作系统上,能够快速的实现一些图像处理和识别的任务OpenCV还提供了Java、Python、cuda等的使用接口、机器学习的基础算法调用,从而使得图像处理和图像分析变
- 深度学习实验-3d医学图像分割
桶的奇妙冒险
深度学习3d人工智能
实验四基于nnU-Net模型的3D医学图像分割实验一、实验介绍腹部多器官分割一直是医学图像分析领域最活跃的研究领域之一,其作为一项基础技术,在支持疾病诊断,治疗规划等计算机辅助技术发挥着重要作用。近年来,基于深度学习的方法在该领域中获得了巨大成功。本实验数据集为多模态腹部分割数据集(AMOS),一个大规模,多样性的,收集自真实临床场景下的腹部多器官分割基准数据。本实验在百度飞桨平台上采用nnU-N
- 图像的拉普拉斯变换实现
SimpleLearing
opencv人工智能计算机视觉
拉普拉斯变换1.简介拉普拉斯变换是一种用于增强图像中的高频细节的图像处理操作。它对图像进行二阶微分,强调了图像中的边缘和细节信息。在拉普拉斯变换后的图像中,边缘通常会显得更加清晰,从而有助于图像分析和特征提取。2.原理拉普拉斯变换的原理是通过对图像进行二阶微分来突出图像中的高频细节。它可以使用卷积操作来实现,通常使用拉普拉斯核(3x3矩阵)进行卷积。具体而言,对于灰度图像,拉普拉斯变换的表达式为:
- 韶关一高层住宅突发火灾 富维烟火识别防止悲剧发生
北京富维图像5369
科技人工智能
近日,韶关市一高层住宅楼突发火灾,幸亏及时得到控制,未造成重大伤亡。这一事件再次提醒我们,高层建筑的火灾安全不容忽视。针对这一问题,北京富维图像公司的FIS智能图像识别系统显得尤为重要。FIS系统利用已部署的监控相机,通过先进的图像分析技术,可以实时监测和识别烟雾和明火。一旦检测到火灾迹象,系统会立即发出警报,使得居民和消防人员能迅速做出反应,有效避免悲剧的发生。这一系统在国内的评价极高,特别是在
- 上海黄浦区中山东二路一建筑发生火灾 富维图像烟火识别助力安全
北京富维图像5369
科技人工智能
近日,上海黄浦区中山东二路一幢建筑发生火灾,所幸未造成重大伤亡。这一事件再次提醒我们,城市中的火灾安全不容忽视。为此,北京富维图像公司推出的FIS智能图像识别系统成为了这一问题的关键解决方案。FIS系统通过已安装的监控相机,运用先进的图像分析技术,能够实时监测烟雾或明火的出现。一旦发现火灾征兆,系统将立即发出警报,使得相关人员能迅速采取行动,有效防止火势蔓延。通过测评发现产品的优势。烟火识别系统的
- 分段息肉数据库Kvasir-SEG介绍和下载
前网易架构师-高司机
深度学习人工智能深度学习kvasir-seg胃肠道息肉
Kvasir-SEGKvasir-SEG是胃肠道息肉图像和相应分割掩模的开放访问数据集,由医生手动注释,然后由经验丰富的胃肠病学家验证。翻译过来是逐像素图像分割,它是医学图像分析中一项要求很高的任务。很难找到具有相应分割掩模的带注释的医学图像。在这里,我们介绍Kvasir-SEG。它是胃肠道息肉图像和相应分割掩模的开放访问数据集,由经验丰富的胃肠病学家手动注释和验证。这项工作对于研究人员将来重现结
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found