时间序列分解模型 —— Neural Decomposition

文章目录

  • 论文及代码
  • 模型
  • 代码
    • model
    • 测试序列
    • 训练
    • 预测
    • 加点噪声
    • pytorch 实现

论文及代码

原始论文:
时间序列分解模型 —— Neural Decomposition_第1张图片
代码:https://github.com/trokas/neural_decomposition


模型

将时间序列分解成周期项和非周期项 g ( t ) g(t) g(t)

x ( t ) = ∑ k = 1 N ( a k ⋅ sin ⁡ ( w k t + ϕ k ) ) + g ( t ) . x(t) = \sum _{k = 1}^{N}{( a_{k} \cdot \sin ( w_{k} t + \phi _{k} )) } + g(t). x(t)=k=1N(aksin(wkt+ϕk))+g(t).

其中 a k , w k , ϕ k a_k, w_k, \phi_k ak,wk,ϕk g ( t ) g(t) g(t) 都需要从数据中学习。

网络结构为:
时间序列分解模型 —— Neural Decomposition_第2张图片
其中 g ( t ) g(t) g(t) 可以理解为序列的趋势项,主要考虑线性趋势 w t + b wt+b wt+b,sigmoid函数,softplus函数等等。

这个模型很容易让人想到 prophet 模型,甚至是 prophet 的简化版,因为 prophet 好歹考虑的是分段线性趋势,还有节假日带来的影响。不过这个模型的优势在于可以通过数据来调节频谱,而 prophet 是从预先给定的频谱中筛选频谱。

代码

参见上述 github 地址,用 keras 实现起来太简单啦,,,

model

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn
import numpy as np
import pandas as pd
from keras.models import Input, Model, Sequential
from keras.layers.core import Dense
from keras.layers.merge import Concatenate
from keras.layers import LSTM, Activation
from keras import regularizers
from scipy.interpolate import interp1d
from fbprophet import Prophet

plt.rcParams['figure.figsize'] = [12.0, 8.0]


def create_model(n, units=10, noise=0.001):
    """
    Constructs neural decomposition model and returns it
    """
    data = Input(shape=(1,), name='time')
    # sin will not work on TensorFlow backend, use Theano instead
    sinusoid = Dense(n, activation=np.sin, name='sin')(data)
    linear = Dense(units, activation='linear', name='linear')(data)
    softplus = Dense(units, activation='softplus', name='softplus')(data)
    sigmoid = Dense(units, activation='sigmoid', name='sigmoid')(data)
    combined = Concatenate(name='combined')([sinusoid, linear, softplus, sigmoid])
    out = Dense(1, kernel_regularizer=regularizers.l1(0.01), name='output')(combined)

    model = Model(inputs=[data], outputs=[out])    
    model.compile(loss="mse", optimizer="adam")

    model.weights[0].set_value((2*np.pi*np.floor(np.arange(n)/2))[np.newaxis,:].astype('float32'))
    model.weights[1].set_value((np.pi/2+np.arange(n)%2*np.pi/2).astype('float32'))
    model.weights[2].set_value((np.ones(shape=(1,units)) + np.random.normal(size=(1,units))*noise).astype('float32'))
    model.weights[3].set_value((np.random.normal(size=(units))*noise).astype('float32'))
    model.weights[4].set_value((np.random.normal(size=(1,units))*noise).astype('float32'))
    model.weights[5].set_value((np.random.normal(size=(units))*noise).astype('float32'))
    model.weights[6].set_value((np.random.normal(size=(1,units))*noise).astype('float32'))
    model.weights[7].set_value((np.random.normal(size=(units))*noise).astype('float32'))
    model.weights[8].set_value((np.random.normal(size=(n+3*units,1))*noise).astype('float32'))
    model.weights[9].set_value((np.random.normal(size=(1))*noise).astype('float32'))

    return model

测试序列

t = np.linspace(0, 1, 100)
X = np.sin(4.25*np.pi*t) + np.sin(8.5*np.pi*t) + 5*t
plt.plot(X)

时间序列分解模型 —— Neural Decomposition_第3张图片

训练

%%time
model = create_model(len(X))
hist = model.fit(t, X, epochs=3000, verbose=0)
plt.plot(hist.history['loss'])

Wall time: 15.8 s
时间序列分解模型 —— Neural Decomposition_第4张图片

预测

prediction = model.predict(np.linspace(0, 2, 200)).flatten()

plt.plot(prediction, color='blue')
plt.plot(X, color='red')

时间序列分解模型 —— Neural Decomposition_第5张图片

加点噪声

t = np.linspace(0, 1, 100)
X = np.sin(4.25*np.pi*t) + np.sin(8.5*np.pi*t) + 5*t + np.random.uniform(size=100)
model = create_model(len(X))
hist = model.fit(t, X, epochs=3000, verbose=0)
prediction = model.predict(np.linspace(0, 2, 200)).flatten()
plt.plot(prediction, color='blue')
plt.plot(X, color='red')

时间序列分解模型 —— Neural Decomposition_第6张图片

pytorch 实现

class ND(nn.Module):
    def __init__(self, n, units=10, noise=0.001):
        super(ND, self).__init__()
        self.wave = nn.Linear(1, n)
        self.unit_linear = nn.Linear(1, units)
        self.unit_softplus = nn.Linear(1, units)
        self.unit_sigmoid = nn.Linear(1, units)
        self.fc = nn.Linear(n + 3*units, 1)
        # Initialize weights
        params = dict(self.named_parameters())
        params['wave.weight'].data = torch.from_numpy((2*np.pi*np.floor(np.arange(n)/2))[:,np.newaxis]).float()
        params['wave.bias'].data = torch.from_numpy(np.pi/2+np.arange(n)%2*np.pi/2).float()
        params['unit_linear.weight'].data = torch.from_numpy(np.ones(shape=(units,1)) + np.random.normal(size=(units,1))*noise).float()
        params['unit_linear.bias'].data = torch.from_numpy(np.random.normal(size=(units))*noise).float()
        params['unit_softplus.weight'].data = torch.from_numpy(np.random.normal(size=(units,1))*noise).float()
        params['unit_softplus.bias'].data = torch.from_numpy(np.random.normal(size=(units))*noise).float()
        params['unit_sigmoid.weight'].data = torch.from_numpy(np.random.normal(size=(units,1))*noise).float()
        params['unit_sigmoid.bias'].data = torch.from_numpy(np.random.normal(size=(units))*noise).float()
        params['fc.weight'].data = torch.from_numpy(np.random.normal(size=(1,n+3*units))*noise).float()
        params['fc.bias'].data = torch.from_numpy(np.random.normal(size=(1))*noise).float()

    def forward(self, x):
        sinusoid = torch.sin(self.wave(x))
        linear = self.unit_linear(x)
        softplus = nn.Softplus()(self.unit_softplus(x))
        sigmoid = nn.Sigmoid()(self.unit_sigmoid(x))
        combined = torch.cat([sinusoid, linear, softplus, sigmoid], dim=1)
        out = self.fc(combined)
        return out

# x = np.linspace(0, 1.5, 150)
# x = np.sin(4.25*np.pi*x)+np.sin(8.5*np.pi*x)+5*x
x = np.linspace(0,1,100)[:, np.newaxis]
X = Variable(torch.from_numpy(x).float())
y = np.sin(np.linspace(0,20,100))[:, np.newaxis]
Y = Variable(torch.from_numpy(y).float())

nd = ND(x.shape[0])
print(nd)

# Loss and Optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(nd.parameters())  

# Train the Model
for epoch in range(2000):
    # Forward + Backward + Optimize
    optimizer.zero_grad()  # zero the gradient buffer
    outputs = nd.forward(X)
    loss = criterion(outputs, Y)

    # Add L1 to loss
    loss += 0.01*torch.sum(torch.abs(dict(nd.named_parameters())['fc.weight']))

    loss.backward()
    optimizer.step()

    if epoch % 100 == 0:
        print ('Epoch {0}, Loss: {1:.4f}'.format(epoch, loss.data[0]))

你可能感兴趣的:(时间序列,深度学习,ND,时间序列,分解)