【一些网站的收集】包含机器学习深度学习大牛主页等

原文链接:http://blog.csdn.net/zb1165048017/article/details/51705020
  1. 数学概念部分
  2. 编程语言学习
  3. 动捕及计算机视觉
  4. 机器学习算法
  5. 深度学习相关
  6. 大牛及其它主页
  7. 几个学习网站
  8. 其它

数学概念部分

坐标系,四元数等和3D有关的数学:http://www.cnblogs.com/xiefeifeihu/archive/2009/11/09/1599198.html.

三维旋转矩阵:http://wenku.baidu.com/view/cc110f88e53a580216fcfe13.html

旋转矩阵、欧拉角、四元数的比较:http://wenku.baidu.com/view/df9e2133eefdc8d376ee32c4.html

欧拉角和四元数的表示:http://wenku.baidu.com/view/c319fa116c175f0e7cd13791.html

四元数与旋转:http://blog.sina.com.cn/s/blog_557d254601018dfv.html

B样条曲线:http://www.cnblogs.com/begtostudy/archive/2010/07/28/1787284.html

非常好的概率统计学习的主页:http://statistics.zone/

误差方差偏差:http://scott.fortmann-roe.com/docs/BiasVariance.html

0 范数、1 范数、2 范数有什么区别?:file:///C:/Program Files (x86)/IntelSWTools/documentation_2017/en/mkl/ps2017/get_started.htm

编程语言学习

C#编程视频:http://lib.csdn.net/base/csharp/resource

OpenGL编程NeHe:http://www.cnblogs.com/irvinow/archive/2009/11/01/1594026.html

OpenGL官网:https://www.opengl.org/

OpenGL“我叫MT“纯手工3D动画制作之1——基础介绍:http://www.cnblogs.com/KC-Mei/p/4666099.html

【强大】非常好的OpenGL教程:http://ogldev.atspace.co.uk/index.html

【Python】从入门到机器学习的视频教程:https://morvanzhou.github.io/

跳动的心【非常好玩的代码】:http://blog.csdn.net/candycat1992/article/details/44040273

跳动的心【原始网站】:https://www.shadertoy.com/view/XsfGRn

绕任意单位轴旋转矩阵的计算:http://blog.csdn.net/pizi0475/article/details/7932909

3D图形编程:http://www.verysource.com/category/3d-graphic/

CMU图形学开设课程简介:http://www.cnblogs.com/wangze/archive/2010/04/05/1704839.html

bezier曲线控制,B样条绘制:http://www.cnblogs.com/zhuyaguang/p/4546967.html

opencv2.3在VS2008下的配置:http://blog.csdn.net/moc062066/article/details/6676117

opencv3.1在VS2013下的配置:http://www.th7.cn/Program/cp/201603/773871.shtml

LearnOpenGL简体中文版:http://bullteacher.com/category/zh_learnopengl_com

OpenGL教程【博客】:http://www.cnblogs.com/zhanglitong

FLTK(fast light toolkit):http://www.seriss.com/people/erco/fltk-videos/fltk-ms-vs-build.html

matlab中plot函数全功能解析:http://blog.sina.com.cn/s/blog_61c0518f0100f0lg.html

matlab图形着色:http://blog.sina.com.cn/s/blog_758521400102vp1a.html

CGJOY:http://www.cgjoy.com/#

火焰特效:http://blog.sina.com.cn/s/blog_5386fec20101750v.html

8小时学会HTML网页开发:http://edu.csdn.net/course/detail/535

Android基础班直播课程视频回放汇总贴:http://www.kgc.cn/bbs/post/6905.shtml

图灵机器人:http://www.csdn.net/tag/图灵机器人

图灵机器人【官网】:http://www.tuling123.com/

C++编译各种有趣程序:http://www.demongan.com/content/?343.html

萌码【学编程的地方】:http://www.mengma.com/volumes

skeletonDrivenAnimation:http://www.pudn.com/downloads466/sourcecode/windows/opengl/detail1956574.html

【MKL】Intel数学核心库:https://software.intel.com/en-us/articles/intel-math-kernel-library-intel-mkl-2017-system-requirements

【GPU】非常好的官方科学计算cublas:http://docs.nvidia.com/cuda/cublas/#cublasxt_setPinningMemMode

动捕及计算机视觉

CMU动捕数据库:http://mocap.cs.cmu.edu/

另一个动捕数据库【提供了bvh格式】:http://accad.osu.edu/research/mocap/mocap_data.htm

HDM05动捕数据库:http://resources.mpi-inf.mpg.de/HDM05/index.html#downloads:cuts

Berkeley Multimodal Human Action Database (MHAD):http://tele-immersion.citris-uc.org/berkeley_mhad#desc

MPII Human Pose Dataset:http://human-pose.mpi-inf.mpg.de/

Human 3.6M:http://vision.imar.ro/human3.6m/description.php

makehuman:http://www.makehuman.org/download.php

另一个提供数据集的地方【还算比较详细,待研究】:https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture

Gaussian Process Dynamical Models for Human Motion【论文主页】:http://www.dgp.toronto.edu/~jmwang/gpdm/

运动编辑:http://wenku.baidu.com/link?url=NWI4MuZS95AF9zK0wgyMNVFA_Hr81QxpZfw06lW0w-Gv6HO6rGK_mq6qxY2Gr5UbBGVGnbCO7Wy5j16mWufZoBkxT6oyXzPQMi4uD2W0JAK

基于运动捕捉数据的人体运动编辑技术研究【论文】:http://max.book118.com/html/2014/0422/7841843.shtm

基于数据驱动的实时人体运动控制动画加界面【论文】:http://www.doc88.com/p-6724472199995.html

运动捕捉数据的处理与编辑技术的研究【论文】:http://www.doc88.com/p-9435446530659.html

动作捕捉ASF/AMC的OpenGL多线程程序:http://download.csdn.net/download/gaojin987/4475156

关节动画和人体动画:http://blog.csdn.net/pizi0475/article/details/5458687

机器学习技术在三维人体运动编辑中的研究【论文】:http://www.doc88.com/p-4055135283810.html

运动捕捉及运动编辑技术研究【论文】:http://www.docin.com/p-901093517.html

运动分割Segmenting Motion Capture Data into Distinct Behaviors :http://graphics.cs.cmu.edu/projects/segmentation/

Motion Computing Lab:http://motionlab.kaist.ac.kr/cglab/?page_id=1172

Motion Blending【文章,综述类】:http://image.diku.dk/projects/media/kristine.slot.07.pdf

Style Translation for Human Motion:http://people.csail.mit.edu/ehsu/work/sig05stf/

Conditional Restricted Boltzmann Machines:http://www.uoguelph.ca/~gwtaylor/thesis/4/

Dynamical Binary Latent Variable Models for 3D Human Pose Tracking:http://www.uoguelph.ca/~gwtaylor/publications/cvpr2010/

Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style:http://www.uoguelph.ca/~gwtaylor/publications/icml2009/

Continuous Character Control with Low-Dimensional Embeddings:http://graphics.stanford.edu/projects/ccclde/

Robust Generation of Dynamical Patterns in Human Motion by a Deep Belief Nets:http://cims.nyu.edu/~sainbar/

Real-Time Human Action Recognition Based on Depth Motion Maps:http://www.utdallas.edu/~cxc123730/depth_image_action_recognition.html

【序列拼接】CTW:http://www.f-zhou.com/ta_code.html

【序列拼接】ACA:http://www.f-zhou.com/tc_code.html

A Deep Learning Framework For Character Motion Synthesis and Editing:http://www.theorangeduck.com/page/deep-learning-framework-character-motion-synthesis-and-editing

Actions as Space-Time Shapes:http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

虚拟人行走的动作融合【论文】:http://www.docin.com/p-407446317.html

Mocap Toolbox:https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mocaptoolbox

Motion Style Toolbox:http://kforger.kapsi.fi/index.html#demos

ASF/AMC格式解读:http://blog.sina.com.cn/s/blog_13cb8d10e0102vc9c.html

AS skeleton:http://graphics.cs.cmu.edu/nsp/course/15-464/Fall05/assignments/StartupCodeDescription.html

三维人体运动编辑与合成技术综述:http://wenku.baidu.com/link?url=RPdSQA7QMJ2Sjg7ZG-Ek3xPvrXl8yba1pUXELaRo6KIwI9Y2Clq11tfa3EFrMa-j1KeZBn9rGnQF14AZt7m0p25TE9AtA5CtDNOFiBK9YBW

运动插值【百度文库】:http://wenku.baidu.com/view/d3c7448d80eb6294dc886c36.html

CVCHINA计算机视觉网址导航:http://www.cvchina.net/hao123/

CVChina计算机视觉论坛:http://www.cvchina.net/catalog.asp?cate=7

cv视觉网【挺多人脸识别代码】:http://www.cvvision.cn/search/opencv/

AForge.NET【C#的计算机视觉库】:http://www.aforgenet.com/

学步园:http://www.xuebuyuan.com/

图像处理库综述:http://mp.weixin.qq.com/s?__biz=MzIzNDM2OTMzOQ==&mid=2247484374&idx=1&sn=3b5daa5aeb59bad4cdb6a5f3e612971a&scene=21#wechat_redirect

【人体运动仿真组】中科院:http://humanmotion.ict.ac.cn/PeopleList.html

OpenCV中文网,有教程:http://wiki.opencv.org.cn/index.php/Download#chm.E6.A0.BC.E5.BC.8F.E6.96.87.E6.A1.A3

International Audio Laboratories Erlangen与语音和CV有关,有demo:https://www.audiolabs-erlangen.de/fau/professor/mueller/data

任程的博客运动数据分割:http://www.cnblogs.com/ArenAK/archive/2010/12/19/1910404.html

Xiaowei Zhou运动数据重构:https://fling.seas.upenn.edu/~xiaowz/dynamic/wordpress/

Jovan Popović拼接、骨骼相关:http://homes.cs.washington.edu/~jovan/

CMU的工程主页,包含动捕方向:http://graphics.cs.cmu.edu/

ASF/AMC数据简介:http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html

BVH数据简介:http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html

基于骨骼的3D姿态识别:第一篇、第二篇

Human Pose Estimation from Monocular Video:https://fling.seas.upenn.edu/~xiaowz/dynamic/wordpress/monocap/

【很强】摄像机矩阵解读:http://ksimek.github.io/

摄像机矩阵解读对应中文理解:http://haiyangxu.github.io/posts/2014/2014-06-12-camera-matrix.html

【人脸识别】主页:http://www.face-rec.org/algorithms/#Video

Master2: Deep Learning for 3D Human Motion:http://morpheo.inrialpes.fr/2016/09/30/master2-deep-learning-for-3d-human-motion/

【视频预测】Generating Videos with Scene Dynamics:http://web.mit.edu/vondrick/tinyvideo/

【Kinect】教程1:http://blog.csdn.net/zouxy09/article/category/1273380

【Kinect】教程2:http://www.cnblogs.com/yangecnu/p/Learning-KinectSDK.html

使用MATLAB机器视觉工具箱实现人脸的检测和跟踪:http://www.ilovematlab.cn/thread-201626-1-1.html

【运动重定向】Interactive Motion Mapping for Real-time Character Control:http://gvv.mpi-inf.mpg.de/projects/DirectMotionMapping/index.html

【声音处理工具箱】VOICEBOX: Speech Processing Toolbox for MATLAB:http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

机器学习算法

一个牛人的随笔:http://leftnoteasy.cnblogs.com/

一系列的机器学习算法:http://www.csuldw.com/

SVD奇异值分解:http://blog.csdn.net/wangran51/article/details/7408414

LDA和PCA:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html#top

opencv实现聚类算法:http://blog.csdn.net/xlh145/article/details/8862680

SVM支持向量机算法概:http://blog.csdn.net/passball/article/details/7661887

支持向量机通俗导论:http://blog.csdn.net/macyang/article/details/38782399

PCA包含详细推导:http://wenku.baidu.com/link?url=lnF32-vrk4gqUIPAFTW4fDXpLMIr0ZG7GpHX3GGyNX34ZOhEdMaDZVp78ewbjcSmF0v5rh2DtOx4KWlUaxx9x63v_8LfjTwaL0jCU2HBeAS

PCA总结以及matlab实现:http://blog.csdn.net/watkinsong/article/details/8234766

PCA实现人脸检测:http://blog.csdn.net/mpbchina/article/details/7384425

人脸检测C++代码:http://mp.weixin.qq.com/s?__biz=MzI2OTAxNTg2OQ==&mid=209167362&idx=1&sn=db4de1e9aa1bb20c2a219d205031ef0a&scene=20&scene=23&srcid=0303gXglBWuhsGHtPmOqQE8Y#rd

matlab中princomp,pcacov,pcares,barttest四大分析函数的应用:http://blog.sina.com.cn/s/blog_6833a4df0100pwma.html

聚类算法Clustering by fast search and find of density peaks的实现:http://blog.csdn.net/jdplus/article/details/40351541#comments

聚类算法Clustering by fast search and find of density peaks的解读:http://blog.csdn.net/itplus/article/details/38926837

矩阵特征值分解与奇异值分解含义解析及应用:http://blog.csdn.net/xiahouzuoxin/article/details/41118351

HMM学习最佳范例:http://www.52nlp.cn/hmm-learn-best-practices-five-forward-algorithm-1

应该掌握的七种回归技术:http://www.csdn.net/article/2015-08-19/2825492

最小二乘法:http://blog.csdn.net/lotus___/article/details/20546259

隐马尔科夫模型攻略:http://blog.csdn.net/pi9nc/article/details/9068043

前向算法Forward algorithm:http://blog.csdn.net/jeiwt/article/details/8076019

最容易理解HMM的文章:http://blog.csdn.net/daringpig/article/details/8072794

Viterbi Algorithm维特比算法【原始资料】:http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/viterbi_algorithm/s1_pg10.html

隐马尔可夫模型(五)——隐马尔可夫模型的解码问题(维特比算法):http://www.cnblogs.com/kaituorensheng/archive/2012/12/04/2802140.html

HMM学习最佳范例七:前向-后向算法:http://blog.csdn.net/u010585135/article/details/43562585

隐马尔科夫(HMM)模型 前向后向(Forward_backward) 维特比 (viterbi)【代码解读】:http://blog.csdn.net/S20091103372/article/details/20400219

 隐马尔科夫模型HMM自学:http://blog.csdn.net/zhqz113144/article/details/9177507

机器学习(Part I)机器学习的种类:http://www.cnblogs.com/ysjxw/archive/2008/04/11/1149002.html

有监督学习与无监督学习:http://wenku.baidu.com/link?url=nM00xplnxWSo4QfgkfmVqGyr-0ebZl3Fp1XNAG4JA74qzCssmZToI7vB3apHMAOjQ6QeQjI1bUuYGaZBzs5RQUl_qVp4knCceHcr4DD0xqW

机器学习有监督学习之--回归:http://www.cnblogs.com/fanyabo/p/4060498.html

机器学习PartII:监督学习和无监督学习:http://www.cnblogs.com/ysjxw/archive/2008/04/11/1149004.html

斯坦福大学机器学习第二课 “单变量线性回归”:http://blog.csdn.net/u011584941/article/details/44961277

第六篇 平稳随机过程(Stationary Stochastic Processes):http://geodesy.blog.sohu.com/273957996.html

高斯过程之FGPLVM【代码工具包Faster GP-LVM software in MATLAB】:https://github.com/lawrennd/fgplvm

高斯过程之SGPLVM【代码工具包Gaussian process latent variable models with shared latent spaces (SGPLVM)】:https://github.com/SheffieldML/SGPLVM

Documentation for GPML Matlab Code version 3.6【高斯过程机器学习matlab代码】:http://www.gaussianprocess.org/gpml/code/matlab/doc/

如何通俗易懂地理解高斯过程:https://www.zhihu.com/question/46631426

Probabilistic PCA with GPLVM【附带概率PCA的高斯过程】:http://www.wikicoursenote.com/wiki/Probabilistic_PCA_with_GPLVM

Kernel Methods for Large Scale Representation Learning【核方法处理大范围表示学习】:http://www.cs.cmu.edu/~andrewgw/pattern/

动态时间规整(DTW):http://blog.csdn.net/liyuefeilong/article/details/45748399

什么是核函数,作用是什么:http://www.360doc.com/content/14/0728/15/14106735_397653989.shtml#

机器学习有很多关于核函数的说法,核函数的定义和作用是什么:https://www.zhihu.com/question/24627666

高斯核函数:http://blog.csdn.net/tianguokaka/article/details/6233369

随机梯度下降:http://www.cnblogs.com/murongxixi/p/3467365.html

梯度下降与随机梯度下降:http://blog.csdn.net/u014568921/article/details/44856915

【插值】插值:http://wenku.baidu.com/view/e9c7766b852458fb770b563c.html

【插值】插值:http://wenku.baidu.com/view/da8bcdad4b73f242326c5f79.html?re=view

【插值】第三章 实验数据的插值1:http://wenku.baidu.com/view/a88e268002d276a200292ebb.html?re=view

【插值】实验四 数据插值与拟合:http://wenku.baidu.com/view/03ab00e90975f46527d3e141.html?re=view

【插值】拉格朗日插值法 matlab:http://wenku.baidu.com/view/589dbf0c844769eae009ed4a.html

【插值】MATLAB编辑n次拉格朗日函数插值法的程序:http://wenku.baidu.com/view/0f3c6a6b561252d380eb6ed2.html

JMLR【Machine Learning Open Source Software有代码哦】:http://www.jmlr.org/mloss/

C#.NET开源项目、机器学习、商务智能:http://www.cnblogs.com/asxinyu/archive/2015/08/17/4733741.html

 位置敏感哈希Locality-Sensitive Hashing:http://blog.csdn.net/zwwkity/article/details/8559301

UDFDL机器学习教程:http://ufldl.stanford.edu/wiki/index.php/UFLDL教程

matlab神经网络视频教程:http://video.1kejian.com/video/?70286-0-0.html

機器學習基石 (Machine Learning Foundations)【教授 Hsuan-Tien Lin, 林軒田】:https://class.coursera.org/ntumlone-003/lecture

Probabilistic Models of Cognition:https://probmods.org/

低秩逼近【研究研究能发个论文出来】Low-Rank Matrix Recovery and Completion via Convex Optimization:http://perception.csl.illinois.edu/matrix-rank/introduction.html

【Matlab Audio Processing Examples】音频处理案例matlab代码:http://labrosa.ee.columbia.edu/matlab/

机器学习大纲:http://dlib.net/ml.html

【CUDA】深度学习框架:https://developer.nvidia.com/deep-learning-frameworks

【算法组】一个机器学习论坛:http://suanfazu.com/

【聊天机器人】:http://www.shareditor.com/bloglistbytag/?tagname=自己动手做聊天机器人

条件随机场:http://blog.csdn.net/chlele0105/article/details/14897761

LibSVM:http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Sigmoid函数、极大似然估计、损失函数以、梯度下降以及正则化:https://www.52ml.net/19641.html

【PRML】理论的MATLAB实现toolbox:http://cn.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox

【C++】机器学习和深度学习库:http://dlib.net/

深度学习相关

ReLu(Rectified Linear Units)激活函数: http://www.cnblogs.com/neopenx/p/4453161.html
Machine and Deep Learning with Python: https://github.com/szwed/awesome-machine-learning-python
ImageNet Classification with Deep ConvolutionalNeural Networks【文章】: http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf
一个人的博客有关深度学习的几篇文章: https://www.52ml.net/tags/向量/page/4
matRBM与受限玻尔兹曼机相关: https://code.google.com/archive/p/matrbm/
深度学习笔记: http://blog.csdn.net/carson2005/article/details/17185309
theano的主页: http://deeplearning.net/software/theano/index.htm l
theano documentation: http://deeplearning.net/software/theano/#
installation of theano on Windows: http://deeplearning.net/software/theano/install_windows.html#install-windows
TensorFlow: https://www.tensorflow.org/versions/r0.8/tutorials/seq2seq/index.html
百度的paddle主页: http://www.paddlepaddle.org/cn/index.html
deeplearning tutorial: http://deeplearning.net/tutorial/
Neural Networks and Deep Learning: http://neuralnetworksanddeeplearning.com/index.html
WildML(RNN相关): http://www.wildml.com/
UFLDL深度学习(NG执笔): http://ufldl.stanford.edu/tutorial/
deeplearning book: http://www.deeplearningbook.org/
tiny-cnn开源库的使用(MNIST)【C++Windows版本】: http://blog.csdn.net/fengbingchun/article/details/50573841
Nature重磅:Hinton、LeCun、Bengio三巨头权威科普深度学习: http://www.dataguru.cn/article-7593-1.html
Deep Learning源代码收集-持续更新…: http://blog.csdn.net/zouxy09/article/details/11910527
【LSTM】Mourad Mourafiq【有LSTM的实现】: http://mourafiq.com/
Deeplearning4j Documentation & Site Map【DL教程,相当不错】: http://deeplearning4j.org/documentation
deeplearning documentation: http://deeplearning.net/tutorial/contents.html
windows下安装caffe【推荐看我前面写的安装博客】: http://suanfazu.com/t/windows-caffe/13579
【RNN】RECURRENT NEURAL NETWORKS TUTORIAL, PART 1 – INTRODUCTION TO RNNS: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
【RNN】循环神经网络(RNN, Recurrent Neural Networks)介绍: http://blog.csdn.net/heyongluoyao8/article/details/48636251
【RBM】RBM toolbox: https://github.com/skaae/rbm_toolbox
【RBM】A Beginner’s Tutorial for Restricted Boltzmann Machines: http://deeplearning4j.org/restrictedboltzmannmachine
【RBM】Ruslan Salakhutdinov主页的一个代码: http://www.cs.toronto.edu/~rsalakhu/code.html
【RBM】受限玻尔兹曼机: http://blog.csdn.net/pi9nc/article/details/19336535
【RBM】受限玻尔兹曼机: http://blog.csdn.net/zouxy09/article/details/8781396/
【RBM】受限玻尔兹曼机(RBM)学习笔记(三)能量函数和概率分布: http://blog.csdn.net/itplus/article/details/19168989
【RBM】限制玻尔兹曼机(Restricted Boltzmann Machine)学习笔记(一): http://blog.csdn.net/roger__wong/article/details/43374343
【CRBM第一篇】 Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations:
地址:http://web.eecs.umich.edu/~honglak/hl_publications.html
【CRBM第二篇】Unsupervised feature learning for audio classification using convolutional deep belief networks.
地址:http://web.eecs.umich.edu/~honglak/hl_publications.html
TIMIT数据集:http://www.fon.hum.uva.nl/david/ma_ssp/2007/TIMIT/
(提示下载方法,用wget -m)因为这个数据集貌似有版权问题,不变说太多,嘿嘿
【CNN】CS231n Convolutional Neural Networks for Visual Recognition: http://cs231n.github.io/neural-networks-1/#actfun
【RNN-RBM】Deep learning:四十九(RNN-RBM简单理解): http://www.cnblogs.com/tornadomeet/p/3439503.html
【caffe的VGG框架】: http://cs.stanford.edu/people/karpathy/vgg_train_val.prototxt
【caffe解析,以及一些深度学习框架的比较】: http://chenrudan.github.io/blog/2015/11/18/comparethreeopenlib.html
【深度学习框架对比】: http://www.infoq.com/cn/news/2016/01/evaluation-comparison-deep-learn
【caffe、tensorFlow、Mxnet对比】: http://chenrudan.github.io/blog/2015/11/18/comparethreeopenlib.html
【DNN】可视化每一层得到的结果: http://yosinski.com/deepvis
【可视化】Visualization of optimal stimuli and invariances  for Tiled Convolutional Neural Networks.: http://cs.stanford.edu/~quocle/TCNNweb/index.html
【NVIDIA】GPU学习社区:http://www.gpuworld.cn/
Keep Up With New Trends: http://handong1587.github.io/deep_learning/2016/07/27/keep-up-with-new-trends.html
15 Deep Learning Tutorials: http://www.datasciencecentral.com/profiles/blogs/15-deep-learning-tutorials
Documentation for Deconvolutional Network Toolbox: http://www.matthewzeiler.com/software/DeconvNetToolbox/Documentation/main.html
hinton的深度学习课程: https:///playlist?list=PLnnr1O8OWc6bcYPBkaOzCyeTjIRd_kiaJ
dropout详解: https://pgaleone.eu/deep-learning/regularization/2017/01/10/anaysis-of-dropout/
深度学习几大应用论文,有大牛在: https://mila.umontreal.ca/publications/
深度玻尔兹曼机DBM的实现: http://www.dmi.usherb.ca/~larocheh/code/dbm_recnet.tar.gz
【有code,MOCAP】结构化RNN: http://asheshjain.org/srnn/
【超分辨率】Image Super-Resolution Using Deep Convolutional Networks: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

大牛及其它主页

CMU计算机科学:http://www.cs.cmu.edu/

刘更代大牛主页:http://www.cad.zju.edu.cn/home/liugengdai/#papers

Tapas Kanungo's Software Page【主要研究HMM】:http://www.kanungo.com/software/software.html

南京大学机器人智能与神经计算研究组:http://cs.nju.edu.cn/rinc/SOINN.html

Sheffield Machine Learning Software【github主页】:https://github.com/SheffieldML?page=2

YARIN GAL【主页,应该很厉害】:http://mlg.eng.cam.ac.uk/yarin/index.html

YARIN GAL中的一个部分,牵扯到GP和caffe【What My Deep Model Doesn't Know】:http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html

Ruslan Salakhutdinov:http://www.cs.toronto.edu/~rsalakhu/

Graham Taylor:http://www.cs.nyu.edu/~gwtaylor/pubs.html

Geoffrey E. Hinton:http://www.cs.toronto.edu/~hinton/还有一个RBM相关的http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html

Yoshua Bengio:http://www.iro.umontreal.ca/~bengioy/yoshua_en/index.html

Yann LeCun's Publications :http://yann.lecun.com/exdb/publis/index.html 主页是:http://yann.lecun.com/ex/index.html

Neil Lawrence Machine Learning:http://inverseprobability.com/

Aaron Hertzmann:http://www.dgp.toronto.edu/~hertzman/index.html

Sam Roweis:http://www.cs.nyu.edu/~roweis/code.html

Dr徐亦达【在优酷上有机器学习课程哦】:http://www-staff.it.uts.edu.au/~ydxu/index.htm

Alexei (Alyosha) Efros:http://people.eecs.berkeley.edu/~efros/

Roland Memisevic:http://www.iro.umontreal.ca/~memisevr/

 Eugene Hsu:http://www.squicky.org/cv/

Wei Liu:http://www.cs.unc.edu/~wliu/

Yangqing Jia (贾扬清)【caffe创始人,你说厉害不】:http://daggerfs.com/

David J Fleet:http://www.cs.toronto.edu/~fleet/

Tomohiko MUKAI:http://mukai-lab.org/mukai/

【此人CRBM研究的比较多】Honglak Lee:http://web.eecs.umich.edu/~honglak/hl_publications.html

【CRBM大牛】Alex Krizhevsky:http://www.cs.utoronto.ca/~kriz/

【RNN大神】Ilya:http://www.cs.utoronto.ca/~ilya/pubs/

【噪声卷积,时空RBM】Sainbayar Sukhbaatar:http://cims.nyu.edu/~sainbar/

【CRBM大牛】PENG QI:http://qipeng.me/software/convolutional-rbm.html#reference

【Daniel Holden】http://www.theorangeduck.com/page/all

bharath hariharan:http://home.bharathh.info/

Katerina Fragkiadaki:http://people.eecs.berkeley.edu/~katef/

Matthew Zeiler: http://www.matthewzeiler.com/

【搞检测的大牛】:RBG:https://people.eecs.berkeley.edu/~rbg/index.html

【CVPR2016】code+paper网址:https://tensortalk.com/?cat=conference-cvpr-2016&t=type-code

SIGGRAPH 2015 papers on the web:http://kesen.realtimerendering.com/sig2015.html

【运动捕捉CMU大牛的主页】有代码CTW和GTW:http://www.cs.cmu.edu/~ftorre/codedata.html

【finetuning和迁移学习】好文章:http://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650718634&idx=1&sn=1220e691541c34281c64655a01793cb0&scene=0#rd

微软研究院刘世霞,做了CNN的可视化,非常好:http://shixialiu.com/

何凯明大神,你懂得:http://kaiminghe.com/

【RNN高手】Ilya Sutskever:http://www.cs.toronto.edu/~ilya/pubs/

【DBM实现大牛】Hugo Larochelle:http://www.dmi.usherb.ca/~larocheh/publications_en.html

【姿态估计】SJTU Machine Vision and Intelligence Group Cewu Lu Publications Code Courses

【姿态估计】初晓:http://www.ee.cuhk.edu.hk/~xchu/

【图像复原】郑海永:http://vision.ouc.edu.cn/~zhenghaiyong/

【图像复原】顾舒航:https://sites.google.com/site/shuhanggu/home

【图像修复,行为识别】Lei Zhang: http://www4.comp.polyu.edu.hk/~cslzhang/

【LSTM卷积】Long-term Recurrent Convolutional Networks:http://jeffdonahue.com/lrcn/

【3D重构,运动捕捉】Tomas Simon:http://www.cs.cmu.edu/~tsimon/

【DBM和dropout】Nitish Srivastava:http://www.cs.toronto.edu/~nitish/


几个学习网站

csdn:http://www.csdn.net/

博客园:http://www.cnblogs.com/

我爱自然语言处理NLP:http://www.52nlp.cn/

Coursera:https://www.coursera.org/

matlab中文论坛:http://www.ilovematlab.cn/forum.php

知乎:https://www.zhihu.com/

gitxiv【有论文有代码极力推荐】:http://gitxiv.com/

tensortalk【另一个有代码和论文的地方】:https://tensortalk.com/?t=type-code

csdn的公开课:http://edu.csdn.net/huiyiCourse/index

Publications【一堆论文,部分有代码】:https://www.cs.toronto.edu/~ilya/pubs/

Jack M. Wang:http://www.dgp.toronto.edu/~jmwang/

【天津大学深度学习一线实战研讨班干货总结与资源下载】:http://datasci.tju.edu.cn/data/index1?sukey=3997c0719f1515200399a26940a285f019a686a850fcc3d81290e00ce57e15e915fbabfbca74f113889c6a7bc0ce4a23

【valse】教学视频:http://vision.ouc.edu.cn/valse/

机器之心:http://www.jiqizhixin.com/insights

【自然语言处理NLP】大牛博客:http://licstar.net/archives/category/自然语言处理

其它

代码托管网站【码云】:http://git.oschina.net/

代码素材网:http://www.16sucai.com/daima/

百度、腾讯、搜狐、360等产品职位笔试智力题分析:http://blog.csdn.net/foreverdengwei/article/details/7683975#comments

百度 机器学习/数据挖掘 一面 被淘汰 记:http://blog.csdn.net/mpbchina/article/details/8018005

常见面试之机器学习算法思想简单梳理:http://blog.csdn.net/jirongzi_cs2011/article/details/15720447

NLPjob【找自然语言处理工作】:http://www.nlpjob.com/jobs/machine-learning/

Pro Git v2中文版:http://wiki.jikexueyuan.com/project/pro-git-two/

测测IQ:http://iqtest.dk/main.swf

CVPR 2015 papers:http://cs.stanford.edu/people/karpathy/cvpr2015papers/

CVPR2015:http://techtalks.tv/cvpr/2015/?url_type=39&object_type=webpage&pos=1

绘制流程图:https://www.processon.com/diagrams

Engineering Village【找论文】:https://www.engineeringvillage.com/home.url?acw=

手写识别数据库THE MNIST DATABASE of handwritten digits:http://yann.lecun.com/exdb/mnist/

中国智能网:http://www.5iai.com/

SIGGRAPH 2016 papers on the web:http://www.kesen.realtimerendering.com/sig2016-changelog.html

windows下的WGET下载东西:http://www.interlog.com/~tcharron/wgetwin.html

WGET各参数介绍:http://blog.csdn.net/cnki_ok/article/details/7921239

【PPT】模板素材网站:http://www.officeplus.cn/p/94/102194.shtml

Texlive简洁教程:http://liam0205.me/2014/09/08/latex-introduction/

下载YOUTUBE视频:https://www.youtubeto.com/zh/#

字幕制作:http://www.arctime.org/create-bilingual-subtitles.html

【破解软件】http://www.shaoit.com/

主流画图软件:http://mp.weixin.qq.com/s?__biz=MzI1NTI4OTIxMA==&mid=2247483898&idx=1&sn=bef156d5e2680e184e763aab194dedd1&scene=21#wechat_redirect

你可能感兴趣的:(人工智能-深度学习-杂项)