(此节内容对应NEHE教程第33课)
利用压缩算法可以减低图片大小。降低图片存储所需的物理存储空间,但是也会相应的增加图片解压缩带来的时间消耗
对于TGA文件的压缩可以简单理解为,在图片信息存储区。并不是把每一个像素点的RGB值都进行存储,而是临近的像素点如果RGB值相同,那么进行合并形成“块”对于一个”块“来说 他们有一个共同的RGB值,但是块是由很多个像素点组成的
0~~11 | 头信息 | 第3位(2)是2 代表未压缩 第3位(2)是10 代表未压缩RLE压缩 |
||||||
12~13 | 图像宽度 | byte[13]*256+byte[12] | ||||||
14~15 | 图像高度 | byte[15]*256+byte[14] | ||||||
16 | 图像每像素存储占用位(bit)数 | 24或32 |
Texture.h
#ifndef __TEXTURE_H__
#define __TEXTURE_H__
#pragma comment(lib, "Opengl32.lib")
#include
typedef struct
{
GLubyte * imageData;
GLuint bpp;
GLuint width;
GLuint height;
GLuint texID;
GLuint type;
} Texture;
#endif
#ifndef __TGA_H__
#define __TGA_H__
#pragma comment(lib, "Opengl32.lib")
#include
#include "texture.h"
typedef struct
{
GLubyte Header[12];
} TGAHeader;
typedef struct
{
GLubyte header[6];
GLuint bytesPerPixel;
GLuint imageSize;
GLuint temp;
GLuint type;
GLuint Height;
GLuint Width;
GLuint Bpp;
} TGA;
TGAHeader tgaheader;
TGA tga;
GLubyte uTGAcompare[12] = {0,0,2, 0,0,0,0,0,0,0,0,0};
GLubyte cTGAcompare[12] = {0,0,10,0,0,0,0,0,0,0,0,0};
bool LoadUncompressedTGA(Texture *, char *, FILE *);
bool LoadCompressedTGA(Texture *, char *, FILE *);
#endif
#include "tga.h"
bool LoadTGA(Texture * texture, char * filename)
{
FILE * fTGA;
fTGA = fopen(filename, "rb");
if(fTGA == NULL)
{
MessageBox(NULL, "Could not open texture file", "ERROR", MB_OK);
return false;
}
if(fread(&tgaheader, sizeof(TGAHeader), 1, fTGA) == 0)
{
MessageBox(NULL, "Could not read file header", "ERROR", MB_OK); e
if(fTGA != NULL)
{
fclose(fTGA);
}
return false;
}
if(memcmp(uTGAcompare, &tgaheader, sizeof(tgaheader)) == 0)
{
LoadUncompressedTGA(texture, filename, fTGA);
}
else if(memcmp(cTGAcompare, &tgaheader, sizeof(tgaheader)) == 0)
{
LoadCompressedTGA(texture, filename, fTGA);
}
else
{
MessageBox(NULL, "TGA file be type 2 or type 10 ", "Invalid Image", MB_OK);
fclose(fTGA);
return false;
}
return true;
}
bool LoadUncompressedTGA(Texture * texture, char * filename, FILE * fTGA)
{
if(fread(tga.header, sizeof(tga.header), 1, fTGA) == 0)
{
MessageBox(NULL, "Could not read info header", "ERROR", MB_OK);
if(fTGA != NULL)
{
fclose(fTGA);
}
return false;
}
texture->width = tga.header[1] * 256 + tga.header[0];
texture->height = tga.header[3] * 256 + tga.header[2];
texture->bpp = tga.header[4];
tga.Width = texture->width;
tga.Height = texture->height;
tga.Bpp = texture->bpp;
if((texture->width <= 0) || (texture->height <= 0) || ((texture->bpp != 24) && (texture->bpp !=32)))
{
MessageBox(NULL, "Invalid texture information", "ERROR", MB_OK);
if(fTGA != NULL)
{
fclose(fTGA);
}
return false;
}
if(texture->bpp == 24)
texture->type = GL_RGB;
else
texture->type = GL_RGBA;
tga.bytesPerPixel = (tga.Bpp / 8);
tga.imageSize = (tga.bytesPerPixel * tga.Width * tga.Height);
texture->imageData = (GLubyte *)malloc(tga.imageSize);
if(texture->imageData == NULL)
{
MessageBox(NULL, "Could not allocate memory for image", "ERROR", MB_OK);
fclose(fTGA);
return false;
}
if(fread(texture->imageData, 1, tga.imageSize, fTGA) != tga.imageSize)
{
MessageBox(NULL, "Could not read image data", "ERROR", MB_OK);
if(texture->imageData != NULL)
{
free(texture->imageData);
}
fclose(fTGA);
return false;
}
// Byte Swapping Optimized By Steve Thomas
for(GLuint cswap = 0; cswap < (int)tga.imageSize; cswap += tga.bytesPerPixel)
{
texture->imageData[cswap] ^= texture->imageData[cswap+2] ^=
texture->imageData[cswap] ^= texture->imageData[cswap+2];
}
fclose(fTGA);
return true;
}
bool LoadCompressedTGA(Texture * texture, char * filename, FILE * fTGA)
{
if(fread(tga.header, sizeof(tga.header), 1, fTGA) == 0)
{
MessageBox(NULL, "Could not read info header", "ERROR", MB_OK);
if(fTGA != NULL)
{
fclose(fTGA);
}
return false;
}
texture->width = tga.header[1] * 256 + tga.header[0];
texture->height = tga.header[3] * 256 + tga.header[2];
texture->bpp = tga.header[4];
tga.Width = texture->width;
tga.Height = texture->height;
tga.Bpp = texture->bpp;
if((texture->width <= 0) || (texture->height <= 0) || ((texture->bpp != 24) && (texture->bpp !=32)))
{
MessageBox(NULL, "Invalid texture information", "ERROR", MB_OK);
if(fTGA != NULL)
{
fclose(fTGA);
}
return false;
}
if(texture->bpp == 24)
texture->type = GL_RGB;
else
texture->type = GL_RGBA;
tga.bytesPerPixel = (tga.Bpp / 8);
tga.imageSize = (tga.bytesPerPixel * tga.Width * tga.Height);
texture->imageData = (GLubyte *)malloc(tga.imageSize);
if(texture->imageData == NULL)
MessageBox(NULL, "Could not allocate memory for image", "ERROR", MB_OK);
fclose(fTGA);
return false;
}
GLuint pixelcount = tga.Height * tga.Width;
GLuint currentpixel = 0;
GLuint currentbyte = 0;
GLubyte * colorbuffer = (GLubyte *)malloc(tga.bytesPerPixel);
do
{
GLubyte chunkheader = 0;
if(fread(&chunkheader, sizeof(GLubyte), 1, fTGA) == 0)
{
MessageBox(NULL, "Could not read RLE header", "ERROR", MB_OK);
if(fTGA != NULL)
{
fclose(fTGA);
}
if(texture->imageData != NULL)
{
free(texture->imageData);
}
return false;
}
if(chunkheader < 128)
{
chunkheader++;
for(short counter = 0; counter < chunkheader; counter++)
{
if(fread(colorbuffer, 1, tga.bytesPerPixel, fTGA) != tga.bytesPerPixel)
{
MessageBox(NULL, "Could not read image data", "ERROR", MB_OK);
if(fTGA != NULL)
{
fclose(fTGA);
}
if(colorbuffer != NULL)
{
free(colorbuffer);
}
if(texture->imageData != NULL)
{
free(texture->imageData);
}
return false;
}
texture->imageData[currentbyte ] = colorbuffer[2];
texture->imageData[currentbyte + 1 ] = colorbuffer[1];
texture->imageData[currentbyte + 2 ] = colorbuffer[0];
if(tga.bytesPerPixel == 4)
{
texture->imageData[currentbyte + 3] = colorbuffer[3];
}
currentbyte += tga.bytesPerPixel;
currentpixel++;
if(currentpixel > pixelcount)
{
MessageBox(NULL, "Too many pixels read", "ERROR", NULL);
if(fTGA != NULL)
{
fclose(fTGA);
}
if(colorbuffer != NULL)
{
free(colorbuffer);
}
if(texture->imageData != NULL)
{
free(texture->imageData);
}
return false;
}
}
}
else
{
chunkheader -= 127;
if(fread(colorbuffer, 1, tga.bytesPerPixel, fTGA) != tga.bytesPerPixel)
{
MessageBox(NULL, "Could not read from file", "ERROR", MB_OK);
if(fTGA != NULL)
{
fclose(fTGA);
}
if(colorbuffer != NULL)
{
free(colorbuffer);
}
if(texture->imageData != NULL)
{
free(texture->imageData);
}
return false;
}
for(short counter = 0; counter < chunkheader; counter++)
{
texture->imageData[currentbyte ] = colorbuffer[2];
texture->imageData[currentbyte + 1 ] = colorbuffer[1];
texture->imageData[currentbyte + 2 ] = colorbuffer[0];
if(tga.bytesPerPixel == 4)
{
texture->imageData[currentbyte + 3] = colorbuffer[3];
}
currentbyte += tga.bytesPerPixel;
currentpixel++;
if(currentpixel > pixelcount)
{
MessageBox(NULL, "Too many pixels read", "ERROR", NULL);
if(fTGA != NULL)
{
fclose(fTGA);
}
if(colorbuffer != NULL)
{
free(colorbuffer);
}
if(texture->imageData != NULL)
{
free(texture->imageData);
}
return false;
}
}
}
}
while(currentpixel < pixelcount);
fclose(fTGA);
return true;
}
main.cpp
#include "header.h"
#include "texture.h"
bool LoadTGA(Texture *, char *);
float spin;
Texture texture[2];
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);
int LoadGLTextures()
{
int Status=FALSE;
// Load The Bitmap, Check For Errors.
if (LoadTGA(&texture[0], "Data/Uncompressed.tga") &&
LoadTGA(&texture[1], "Data/Compressed.tga"))
{
Status=TRUE;
for (int loop=0; loop<2; loop++)
{
glGenTextures(1, &texture[loop].texID);
glBindTexture(GL_TEXTURE_2D, texture[loop].texID);
glTexImage2D(GL_TEXTURE_2D, 0, texture[loop].bpp / 8, texture[loop].width, texture[loop].height, 0, texture[loop].type, GL_UNSIGNED_BYTE, texture[loop].imageData);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
if (texture[loop].imageData)
{
free(texture[loop].imageData);
}
}
}
return Status;
}
void ReSizeGLScene(GLsizei width, GLsizei height)
{
if (height==0)
{
height=1;
}
glViewport(0,0,width,height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Calculate The Aspect Ratio Of The Window
gluPerspective(45.0f,(GLfloat)width/(GLfloat)height,0.1f,100.0f);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
}
int InitGL(void)
{
if (!LoadGLTextures())
{
return FALSE;
}
glEnable(GL_TEXTURE_2D);
glShadeModel(GL_SMOOTH);
glClearColor(0.0f, 0.0f, 0.0f, 0.5f);
glClearDepth(1.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
return TRUE;
}
void DrawGLScene(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
glTranslatef(0.0f,0.0f,-10.0f);
spin+=0.05f;
for (int loop=0; loop<20; loop++)
{
glPushMatrix();
glRotatef(spin+loop*18.0f,1.0f,0.0f,0.0f);
glTranslatef(-2.0f,2.0f,0.0f);
glBindTexture(GL_TEXTURE_2D, texture[0].texID);
glBegin(GL_QUADS);
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f);
glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 0.0f);
glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, -1.0f, 0.0f);
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 0.0f);
glEnd();
glPopMatrix();
glPushMatrix();
glTranslatef(2.0f,0.0f,0.0f);
glRotatef(spin+loop*36.0f,0.0f,1.0f,0.0f);
glTranslatef(1.0f,0.0f,0.0f);
glBindTexture(GL_TEXTURE_2D, texture[1].texID);
glBegin(GL_QUADS);
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 1.0f, 0.0f);
glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, 1.0f, 0.0f);
glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, -1.0f, 0.0f);
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, -1.0f, 0.0f);
glEnd();
glPopMatrix();
}
glFlush();
}
void rotate()
{
spin+=0.05f;
glutPostRedisplay();
}
void keyboard(unsigned char key,int x,int y)
{
switch (key)
{
case 'S':
glutIdleFunc(rotate);
break;
case 'R':
glutIdleFunc(NULL);
break;
}
}
int main(int argc,char **argv)
{
glutInit(&argc,argv);
glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB|GLUT_DEPTH);
glutInitWindowSize(800,600);
glutInitWindowPosition(100,100);
glutCreateWindow("加载压缩TGA");
InitGL();
glutDisplayFunc(DrawGLScene);
glutKeyboardFunc(keyboard);
glutReshapeFunc(ReSizeGLScene);
glutMainLoop();
}