问题描述
最近经常被问到一个问题,”为什么我们系统进程占用的物理内存(Res/Rss)会远远大于设置的Xmx值”,比如Xmx设置1.7G,但是top看到的Res的值却达到了3.0G,随着进程的运行,Res的值还在递增,直到达到某个值,被OS当做bad process直接被kill掉了。
top - 16:57:47 up 73 days, 4:12, 8 users, load average: 6.78, 9.68, 13.31 Tasks: 130 total, 1 running, 123 sleeping, 6 stopped, 0 zombie Cpu(s): 89.9%us, 5.6%sy, 0.0%ni, 2.0%id, 0.7%wa, 0.7%hi, 1.2%si, 0.0%st ... PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 22753 admin 20 0 4252m 3.0g 17m S 192.8 52.7 151:47.59 /opt/app/java/bin/java -server -Xms1700m -Xmx1700m -Xmn680m -Xss256k -XX:PermSize=128m -XX:MaxPermSize=128m -XX:+UseStringCache -XX:+ 40 root 20 0 0 0 0 D 0.3 0.0 5:53.07 [kswapd0]
物理内存大于Xmx可能吗
先说下Xmx,这个vm配置只包括我们熟悉的新生代和老生代的最大值,不包括持久代,也不包括CodeCache,还有我们常听说的堆外内存从名字上一看也知道没有包括在内,当然还有其他内存也不会算在内等,因此理论上我们看到物理内存大于Xmx也是可能的,不过超过太多估计就可能有问题了。
物理内存和虚拟内存间的映射关系
我们知道os在内存上面的设计是花了心思的,为了让资源得到最大合理利用,在物理内存之上搞一层虚拟地址,同一台机器上每个进程可访问的虚拟地址空间大小都是一样的,为了屏蔽掉复杂的到物理内存的映射,该工作os直接做了,当需要物理内存的时候,当前虚拟地址又没有映射到物理内存上的时候,就会发生缺页中断,由内核去为之准备一块物理内存,所以即使我们分配了一块1G的虚拟内存,物理内存上不一定有一块1G的空间与之对应,那到底这块虚拟内存块到底映射了多少物理内存呢,这个我们在linux下可以通过/proc/
8dc00000-100000000 rwxp 00000000 00:00 0 Size: 1871872 kB Rss: 1798444 kB Pss: 1798444 kB Shared_Clean: 0 kB Shared_Dirty: 0 kB Private_Clean: 0 kB Private_Dirty: 1798444 kB Referenced: 1798392 kB Anonymous: 1798444 kB AnonHugePages: 0 kB Swap: 0 kB KernelPageSize: 4 kB MMUPageSize: 4 kB
一般来说连续分配的内存块还是有一定关系的,当然也不能完全肯定这种关系,此次为了排查这个问题,我特地写了个简单的分析工具来分析这个问题,得到的效果大致如下:
当然这只是一个简单的分析,后面我们会挖掘更多的点出来,比如每个内存块是属于哪块memory pool,到底是什么地方分配的等(注:上面的第一条,其实就是new+old+perm对应的虚拟内存及其物理内存映射情况
)。
进程满足什么条件会被os因为oom而被kill
当一个进程无故消失的时候,我们一般看/var/log/message
里是否有Out of memory: Kill process
关键字(如果是java进程我们先看是否有crash日志),如果有就说明是被os因为oom而被kill了:
从上面我们看到了一个堆栈,也就是内核里选择被kill进程的过程,这个过程会对进程进行一系列的计算,每个进程都会给它们计算一个score,这个分数会记录在/proc/
里,通常这个分数越高,就越危险,被kill的可能性就越大,下面将内核相关的代码贴出来,有兴趣的可以看看,其中代码注释上也写了挺多相关的东西了:
物理内存到底去哪了?
DirectByteBuffer冰山对象?
这是我们查这个问题首先要想到的一个地方,是否是因为什么地方不断创建DirectByteBuffer对象,但是由于没有被回收导致了内存泄露呢,之前有篇文章已经详细介绍了这种特殊对象,可以看我之前发的文章《JVM源码分析之堆外内存完全解读》,知道后台到底绑定了多少堆外内存还没有被回收:
某个动态库里频繁分配?
对于动态库里频繁分配的问题,主要得使用google的perftools工具了,该工具网上介绍挺多的,就不对其用法做详细介绍了,通过该工具我们能得到native方法分配内存的情况,该工具主要利用了unix的一个环境变量LD_PRELOAD,它允许你要加载的动态库优先加载起来,相当于一个Hook了,于是可以针对同一个函数可以选择不同的动态库里的实现了,比如googleperftools就是将malloc方法替换成了tcmalloc的实现,这样就可以跟踪内存分配路径了,得到的效果类似如下:
从上面的输出中我们看到了zcalloc
函数总共分配了1616.3M的内存,还有Java_java_util_zip_Deflater_init
分配了1591.0M内存,deflateInit2_
分配了1590.5M,然而总共才分配了1670.0M内存,所以这几个函数肯定是调用者和被调用者的关系:
上述代码也验证了他们这种关系。
那现在的问题就是找出哪里调用Java_java_util_zip_Deflater_init
了,从这方法的命名上知道它是一个java的native方法实现,对应的是java.util.zip.Deflater
这个类的init
方法,所以要知道init方法哪里被调用了,跟踪调用栈我们会想到btrace工具,但是btrace是通过插桩的方式来实现的,对于native方法是无法插桩的,于是我们看调用它的地方,找到对应的方法,然后进行btrace脚本编写:
import com.sun.btrace.annotations.*; import static com.sun.btrace.BTraceUtils.*; @BTrace public class Test { @OnMethod( clazz="java.util.zip.Deflater", method="" ) public static void onnewThread(int i,boolean b) { jstack(); } }
于是跟踪对应的进程,我们能抓到调用Deflater构造函数的堆栈
从上面的堆栈我们找出了调用java.util.zip.Deflate.init()
的地方
问题解决
上面已经定位了具体的代码了,于是再细致跟踪了下对应的代码,其实并不是代码实现上的问题,而是代码设计上没有考虑到流量很大的场景,当流量很大的时候,不管自己系统是否能承受这么大的压力,都来者不拒,拿到数据就做deflate,而这个过程是需要分配堆外内存的,当量达到一定程度的时候此时会发生oom killer,另外我们在分析过程中发现其实物理内存是有下降的
这也就说明了其实代码使用上并没有错,因此建议将deflate放到队列里去做,比如限制队列大小是100,每次最多100个数据可以被deflate,处理一个放进一个,以至于不会被活活撑死。
推荐阅读:
PerfMa KO 系列课之 JVM 参数【Memory篇】
一次线上服务高 CPU 占用优化实践