- 常见机器学习算法总结
婉妃
基本算法总结正面.jpeg图的左半部分列出了常用的机器学习算法与它们之间的演化关系,分为有监督学习,无监督学习,强化学习3大类。右半部分列出了典型算法的总结比较,包括算法的核心点如类型,预测函数,求解的目标函数,求解算法。理解和记忆这张图,对你系统化的掌握机器学习与深度学习会非常有帮助!基本公式反面.jpeg
- 机器学习算法总结
doverxu
回归算法线性回归算法:支持向量机&向前逐步回归&惩罚线性回归(岭回归/套索回归/ElasticNet/最小角度回归LARS/Glmnet)非线性回归算法二元决策树:分割点评价标准是基尼不纯性度量和信息增益自举集成(Bagging):从训练数据集获得一系列的自举样本,对每一个自举样本训练一个基学习器,将基学习器的均值作为结果。梯度提升算法:与Bagging和随机森林的不同之处在于它在减少方差的同时,
- 【深入探究人工智能】:常见机器学习算法总结
.小智
小智带你闲聊人工智能机器学习算法
文章目录1、前言1.1机器学习算法的两步骤1.2机器学习算法分类2、逻辑回归算法2.1逻辑函数2.2逻辑回归可以用于多类分类2.3逻辑回归中的系数3、线性回归算法3.1线性回归的假设3.2确定线性回归模型的拟合优度3.3线性回归中的异常值处理4、支持向量机(SVM)算法4.1优点4.2缺点小结博客主页:小智_x0___0x_欢迎关注:点赞收藏✍️留言系列专栏:小智带你闲聊代码仓库:小智的代码仓库1
- Lime算法总结--可解释性机器学习算法总结
南京比高IT
可解释性分析算法人工智能
一.引言前面我们进行了CAM、GRAD-CAM算法的介绍,本文我们继续介绍一种算法:Lime(LocalInterpretableModel-AgnosticExplanations)二.算法介绍Lime算法是基于局部代理模型来对单个样本进行解释。假设对于需要解释的黑盒模型,取关注的实例样本,在其附近进行扰动生成新的样本点,并得到黑盒模型的预测值,基于新的数据集训练可解释的模型来得到对黑盒模型良好
- 机器学习算法总结
Yngxiao123
机器学习
朴素贝叶斯:有以下几个地方需要注意:只能做分类1.如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。2.计算公式如下:其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知,=,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次
- 机器学习算法总结
程序汪赵可乐
cvnlp算法机器学习人工智能
机器学习两个核心任务:任务一:如何优化训练数据—>主要用于解决欠拟合问题任务二:如何提升泛化性能—>主要用于解决过拟合问题KNN定义:给定一个训练集,对新输入的未知样本,通过计算与每个训练样本的距离,找到与该实例最邻近的K个实例,这K个实例大多属于某个类,该样本就属于某个类应用场景:分类/回归问题算法流程:计算已知类别数据集中的点与当前点之间的距离按照距离值进行排序选取最小的k个距离,并统计这k个
- 机器学习算法总结
正在思考中
机器学习机器学习
机器学习(MachineLearning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。严格的定义:机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问。这里所说的“机器”,指的就是计算机,电子计算机,中子计算机、光子计算机或神经计算
- 十大常用机器学习算法总结(持续完善)
二哥不像程序员
数据挖掘机器学习算法python机器学习人工智能新星计划
前言之前二哥连载了各类常用的机器学习算法的原理与具体推倒过程,本文我们对常用的十大机器学习算法进行总结。记得收藏+点赞+评论呦!目录前言一、线性回归二、K近邻算法(KNN)三、朴素贝叶斯(NB)四、逻辑回归(LR)五、支持向量机(SVM)六、决策树(DT)七、随机森林(RF)八、GBDT九、XGBoost十、K-Means一、线性回归思路:线性回归假设目标值与特征之间线性相关,即满足一个多元一次方
- 【机器学习算法总结】XGBoost
y430
KaggleMachinelearning
目录1.XGBoost2.CART树2.1优缺点2.2分裂依据2.2.1分类2.2.2回归2.3总结2.4参考3.算法原理3.1定义树的复杂度3.2打分函数计算示例3.3分裂结点3.3.1贪心法3.3.2近似算法3.3.3分布式加权直方图算法(WeightedQuantileSketch)4.损失函数(指定grad、hess)4.1参考5.缺失值6.其他优化6.1正则化6.2计算速度提升6.2.1
- 机器学习算法总结(六)——EM算法与高斯混合模型
weixin_30291791
人工智能
极大似然估计是利用已知的样本结果,去反推最有可能(最大概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值。然而现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未知,因此无法直接通过最大似然估计直接求参数值。EM算法是一种迭代算法,用于含有隐变量的概率模型的极大似然估计,或者说是极大后验概率估计。1、经典的三硬币模型引入一个例子来说明隐变量存在的问题。假设有3
- 机器学习总结一:Bagging之决策树、随机森林原理与案例
想考个研
机器学习决策树随机森林
机器学习算法总结一、Bagging之决策树、随机森林原理与案例二、boosting之GBDT、XGBT原理推导与案例三、SVM原理推导与案例四、逻辑回归与反欺诈检测案例五、聚类之K-means一、Bagging之决策树、随机森林原理与案例1.决策树1.1简介决策树(DecisionTree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据种总结出决策规则,并利用树状图结构呈现这些规则
- 机器学习总结三:SVM原理推导与案例
想考个研
机器学习支持向量机算法
机器学习算法总结一、Bagging之决策树、随机森林原理与案例二、boosting之GBDT、XGBT原理推导与案例三、SVM原理推导与案例四、逻辑回归与反欺诈检测案例五、聚类之K-means三、SVM1.原理推导(硬间隔)1.1分类问题代数化**svm原理一句话概括:找出一个最优的直线(或超平面)去隔离不同类别样本数据,达到分类目的。**图1图2图1:找出一条直线将样本完美地划分成两类(注意这样
- 机器学习总结四:逻辑回归与反欺诈检测案例
想考个研
机器学习逻辑回归算法
机器学习算法总结一、Bagging之决策树、随机森林原理与案例二、boosting之GBDT、XGBT原理推导与案例三、SVM原理推导与案例四、逻辑回归与反欺诈检测案例五、聚类之K-means四、逻辑回归1、概述由线性回归变化而来的,应用于分类问题中的广义回归算法。组成:回归函数z=w1x1+w2x2+...+wnxn+b=[w1w2wnb]∗[x1x2⋮xn1]=wTXz=w_1x_1+w_2x
- 机器学习算法总结--朴素贝叶斯
spearhead_cai
机器学习算法总结机器学习算法朴素贝叶斯
这次需要总结的是朴素贝叶斯算法,参考文章:《统计学习方法》机器学习常见算法个人总结(面试用)朴素贝叶斯理论推导与三种常见模型朴素贝叶斯的三个常用模型:高斯、多项式、伯努利简介朴素贝叶斯是基于贝叶斯定理与特征条件独立假设的分类方法。贝叶斯定理是基于条件概率来计算的,条件概率是在已知事件B发生的前提下,求解事件A发生的概率,即P(A|B)=P(AB)P(B),而贝叶斯定理则可以通过P(A|B)来求解P
- 机器学习算法总结
ZQ_ZHU
MachineLearning秋招机器学习算法
转自:https://blog.csdn.net/weixin_40411446/article/details/81836322~~~~~·个人整理,如需转载,请说明并备注,不甚感激~~~~~~(这篇文章我很早发布在简书上,不用简书好多年了,哈哈哈,居然上了热搜,特复制在CSDN上供大家参考,为秋招攒点人品)suxuer简书原文地址BAT机器学习面试系列1.请简要介绍下SVM。SVM,全称是su
- 机器学习算法总结
#叫啥名字呢
机器学习机器学习算法
~~~~~·个人整理,如需转载,请说明并备注,不甚感激~~~~~~(这篇文章我很早发布在简书上,不用简书好多年了,哈哈哈,居然上了热搜,特复制在CSDN上供大家参考,为秋招攒点人品)suxuer简书原文地址BAT机器学习面试系列1.请简要介绍下SVM。SVM,全称是supportvectormachine,中文名叫支持向量机。SVM是一个面向数据的分类算法,它的目标是为确定一个分类超平面,从而将不
- 机器学习期末练习题
unseven
机器学习机器学习期末练习题
目录KNN决策树朴素贝叶斯SVMadaboost梯度下降法KmeansAprioriSVD重要的评估指标(注意F1score)机器学习算法总结过拟合和欠拟合产生的原因:解决欠拟合(高偏差)的方法解决过拟合(高方差)的方法:KNN决策树朴素贝叶斯SVMadaboost这个题的答案给的有问题,推荐看完这个解析41、AdaBoost算法原理的举例推演梯度下降法KmeansAprioriSVD重要的评估指
- 梯度提升决策树(GBDT)与XGBoost、LightGBM
weixin_ry5219775
决策树机器学习算法
20211224【机器学习算法总结】XGBoost_yyy430的博客-CSDN博客_xgboostxgboost参数默认:auto。XGBoost中使用的树构造算法。可选项:auto,exact,approx,hist,gpu_exact,gpu_hist。分布式和外部存储器版本仅支持tree_method=approx。auto:使用启发式方法选择最快的方法。(1)对于中小型数据集,将使用精确
- 支持向量机SVM
余生最年轻
机器学习
关键字:vector,support,machine,核函数,支持向量机由于自然语言分类总结:SVM是一个分类问题,在学习复杂的非线性方程时效果很好,是监督式学习(详见前面的微博:机器学习算法总结)。例子:from吴恩达的机器学习视频,肿瘤大小与是否患病的例子1.定义找到一条直线,使得直线可以划分两类,并且到两类的距离(就是图上的垂线长度)一样,这是一条最佳的直线。离直线最近的点叫vector,直
- 机器学习算法总结之聚类:K-means
kaiyuan_sjtu
ML算法总结
写在前面在前面学习的ML算法中,基本都是有监督学习类型,即存在样本标签。然而在机器学习的任务中,还存在另外一种训练样本的标签是未知的,即“无监督学习”。此类任务中研究最多、应用最广泛的是“聚类”(clustering),常见的无监督学习任务还有密度估计、异常检测等。本文将首先介绍聚类基本概念,然后具体地介绍几类细分的聚类算法。参考资料:K-Means聚类算法原理1.聚类简介聚类试图将数据集中的样本
- 机器学习算法总结知识点索引
光英的记忆
算法tensorflowNLP
百面机器学习算法总结索引(声明:以下所有内容及其链接内容来自于百面机器学习一书,仅供自己方便学习和复习,不做任何商业用途,所有链接内容继承本声明)第一节:特征归一化1.为什么需要对数值类型的特征做归一化?2.在对数据进行预处理时,应该怎样处理类别型特征?3.如何处理高纬度组合特征?什么是组合特征?4.5.有哪些文本表示模型?它们各有什么优缺点?6.Word2vec是如何工作的?它和LDA有什么区别
- 机器学习算法总结--决策树
spearhead_cai
机器学习算法
简介定义:分类决策树模型是一种描述对实例进行分类的树形结构。决策树由结点和有向边组成。结点有两种类型:内部结点和叶结点。内部结点表示一个特征或属性,叶结点表示一个类。决策树学习通常包括3个步骤:特征选择、决策树的生成和决策树的修剪。决策树学习本质上是从训练数据集中归纳出一组分类规则,也可以说是由训练数据集估计条件概率模型。它使用的损失函数通常是正则化的极大似然函数,其策略是以损失函数为目标函数的最
- 使用Python语言进行机器学习工作流的实例分析
冬之晓东
python机器学习数据处理数据挖掘
最近,在kaggle上找到一位大牛写的机器学习算法总结,感觉流程清晰,内容详实,因此翻译并分享下,由于作者不明原因将原文删除了,所以没法放上原文地址,文中主要以代码实践的方式展开各种算法,原理方面参考文中的地址连接(这是自己加上的),以便随时查阅~目录目录使用Python语言进行机器学习工作流的实例分析1.介绍2.机器学习工作流程3问题定义3.1问题特征3.2目标3.3变量4.输入输出5.安装工具
- 机器学习算法总结11:XGBoost
小颜学人工智能
机器学习
XGBoost(eXtremeGradientBoosting)是于2015年提出的GradientBoosting实现算法,在速度和精度较GBDT有显著提升。XGBoost以类似牛顿法的方式进行优化。任何机器学习问题都可以从目标函数出发,目标函数分为两部分:损失函数+正则化项,其中,损失函数用于描述模型拟合数据的程度,正则化项用于控制模型的复杂度。与GDBT一样,XGBoost采用加法模型,设基
- 机器学习算法总结12:LightGBM
小颜学人工智能
机器学习
LightGBM是一个梯度(GradientBoosting,GB)框架,可用于分类、回归、排序等机器学习任务。相比于XGBoost,LightGBM在不降低准确率的前提下,速度提升了10倍左右,占用内存下降了3倍左右。直方图算法(HistogramAlgorithm)的基本思想是将连续的特征离散化为k个离散特征,同时构造一个宽度为k的直方图,用于统计信息(含有k个bin)即将连续值映射到对应bi
- 机器学习算法总结9:k-means聚类算法
小颜学人工智能
机器学习
无监督学习:训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。聚类是典型无监督学习任务,它试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个簇。距离度量:通过距离来定义相似度度量,距离越大,相似度越小。最常用的距离度量是闵可夫斯基距离,其中,当p=2时,称为欧氏距离;当p=1时,称为曼哈顿距离。详见我的博客:机器学
- 机器学习算法总结10:Bagging及随机森林
小颜学人工智能
机器学习
Bagging是并行式集成学习方法最著名的代表,可以用于分类任务,也可以用于回归任务,被誉为“代表集成学习技术水平的方法”。不同于Boosting方法对训练数据集赋予不同的权重训练基学习器,Bagging采用“重采样法”,将训练数据集进行采样,进而产生若干个不同的子集,再从每个数据子集中训练出一个基学习器,然后使用结合策略得到强学习器。为得到不同的采样集,使用自助采样法进行采样:给定包含m个样本的
- 机器学习算法总结6:线性回归与逻辑回归
小颜学人工智能
机器学习
线性回归(LinearRegression):线性回归是回归模型,y=f(x):表明自变量x和因变量y的关系。1.模型2.策略损失函数(平方损失函数):注:平方误差代价函数是解决回归问题最常用的代价函数。3.算法最小二乘法:注意:要求X是满秩的!逻辑回归(LogisticRegression):逻辑回归是统计学习中的经典分类方法,属于对数线性模型。1.模型逻辑回归实际上是处理二类分类问题的模型,输
- 基于scikit-learn的随机森林调参实战
kaiyuan_sjtu
ML算法总结
写在前面在之前一篇机器学习算法总结之Bagging与随机森林中对随机森林的原理进行了介绍。还是老套路,学习完理论知识需要实践来加深印象。在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor。当然RF的变种ExtraTrees也有,分类类ExtraTreesClassifier,回归类ExtraTreesRegr
- 【机器学习算法总结】GBDT
y430
MachinelearningKaggle
目录1、GBDT2、GBDT思想3、负梯度拟合4、损失函数4.1、分类4.2、回归5、GBDT回归算法6、GBDT分类算法6.1、二分类6.2、多分类7、正则化8、RF与GBDT之间的区别与联系9、优缺点优点缺点10、应用场景11、主要调参的参数12、sklearn.ensemble.GradientBoostingClassifier参数及方法说明参考1、GBDTGBDT(GradientBoo
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f