【系列论文研读】Pose Estimation

Human Pose Estimation

一、Definition:

  • defined as the problem of localization of human joints
  • challenges of this problem – strong articulations, small and barely visible joints

【系列论文研读】Pose Estimation_第1张图片

 

二、Two methods:

  1. Top-downLocate Person -> Locate Joints
  2. Bottom-up Locate All Joints -> which person

 

Paper

一、DeepPosecvpr2014

TitleDeepPose: Human Pose Estimation via Deep Neural Networks

AuthorAlexander Toshev, Christian Szegedy (Google)

Main contributions:

1、formulate the pose estimation as a joint regression problem

              Using the entire image as input for each joint.

2、propose a cascade of DNN-based pose predictors

 

Method:

pose vector:

A labeled image:

Normalize the joint coordinates to a box bounding the human body or parts of it:

Image: (x,N(yi,b))

Network architecture

1. estimating an initial pose as outlined in the previous section

2. additional DNN regressors are trained to predict a displacement of the joint locations from previous stage to the true location.

【系列论文研读】Pose Estimation_第2张图片

 

二、Stacked Hourglass Networks ECCV2016

TitleStacked Hourglass Networks for Human Pose Estimation

Author Alejandro Newell, Kaiyu Yang, and Jia Deng (University of Michigan)

Key idea:

1.The network captures and consolidates information across all scales of the image.

2.pools down to a very low resolution, then upsamples and combines features across multiple resolutions 

3.consecutively placing multiple hourglass modules together end-to-end

Network architecture:

1、Residual Module

【系列论文研读】Pose Estimation_第3张图片

All convolutional layers have stride=1, padding=1, no change of data size, and only changes the depth.

2、HG

【系列论文研读】Pose Estimation_第4张图片

 

  • The symmetric topology of these networks is similar
  • simple nearest neighbor upsampling
  • outputs a collection of heatmaps

3、Total network with intermediate supervision

【系列论文研读】Pose Estimation_第5张图片

 

三、Convolutional Part Heatmap Regression(ECCV2016)

TitleHuman pose estimation via Convolutional Part Heatmap Regression

AuthorAdrian Bulat and Georgios Tzimiropoulos (University of Nottingham)

Key idea Can effectively handle occlusion

【系列论文研读】Pose Estimation_第6张图片

【系列论文研读】Pose Estimation_第7张图片Loss = pixelwise + cross entropy loss

 

四、FANICCV2017

TitleHow far are we from solving the 2D & 3D Face Alignment problem?

AuthorAdrian Bulat and Georgios Tzimiropoulos (University of Nottingham)

1、2D FAN

【系列论文研读】Pose Estimation_第8张图片

2、2D to 3D FAN

【系列论文研读】Pose Estimation_第9张图片

1.the input RGB channels have been augmented with 68 additional channels, one for each 2D landmark

2.3D annotations are actually the 2D projections of the 3D coordinates

 

五、CPNCVPR2018

TitleCascaded Pyramid Network for Multi-Person Pose Estimation

AuthorYilun Chen∗ Zhicheng Wang∗ Yuxiang Peng1 Zhiqiang Zhang2 Gang Yu Jian Sun

Institution Face++

PerformanceCOCO 17 Key point detection champion

Problemhard keypoint detection

Key idea: two stages: GlobalNet and RefineNet; Pyramid

Network:

【系列论文研读】Pose Estimation_第10张图片

1. 把人体的关节点,大致分类两类:简单的部分和难的部分。用不同的方案去解决简单点和难点,先解决容易点,再解决难点。在解决难关节点部分时,提供更多的上下文信息,更大的可感受野。

2. 动态地将loss值比较大的几个channels进行反向学习;个人理解是RefineNet Loss更加关注loss值比较大的点,而这些点往往就是hard keypoint

3、GlobalNetResnet50cov2~5——Pyramid

4、Upsample before elem-sum   

5、L2loss:heatmap;L2loss*: online hard mining, which only BP some channels for hard points

 

六、Fast Human Pose Estimationcvpr2019

TitleFast Human Pose Estimation

Author Feng Zhang(1) Xiatian Zhu(2) Mao Ye(1)

1. University of Electronic Science and Technology of China

2. Vision Semantics Limited

【系列论文研读】Pose Estimation_第11张图片

你可能感兴趣的:(论文研读)