[笔记] Convex Optimization 2015.11.25

y=sup{xTy:x1}xTyxy
(because xTxyy )
Want inequality of type: xTyf(x)+"f(y)" for “general” f (Fenchel’s Inequality)

  • Definition: For f:RnR , the conjugate f of f is defined by f(y)=supx(xTyf(x))
    with domf= set of y ’s for which sup is < .
  • Example:

    1. f(x)=aTx+b(xRn)
      f(y)=supxxTyaTxb={bif yaif y=a
    2. f(x)=logx(x>0)
      (xy+logx)=y+1x=0x=1y
      f(y)=supx>0xTy+logx={log(y)1if y0if y<0
    3. f(x)=ex(xR)
      (xyex)=yex=0x=logy
      f(y)=supxxTyex={ylogyyif y<0if y0
    4. f(x)=xlogx(x0)
      (xyxlogx)=ylogx1=0x=ey1
      f(y)=supx0xTyxlogx=yey1(y1)ey1=ey1
    5. f(x)=12xTQx with QSn++
      f(y)=supxxTy12xTQx=yTQ1y12yTQ1y=12yTQ1y
      ( infxxTAx+xTbbestx=12A1b )
      So x=Q1y
      xTy12xTQx+12yTQ1y , for all Q0
    6. f(x)=log(ni=1exi)
      f(y)=supxxTylog(ni=1exi)
      (xylog(ni=1exi))=yexini=1exi=0
      yi=exini=1exi,y0,1Ty=1
      assume for simplicity, y0
      put xi=log(yi) , then exi=1Ty=1 and optimality conditions hold
      then f(y)=ni=1yilog(yi)log(1Ty)=ni=1yilog(yi)
    7. f(x)=x
      f(y)=supxxTyx={0if y1if y>1
      xTyxxyx=x(y1)0 if y10
    8. f(x)=12x2
      f(y)=supxxTy12x2=12y2
      xTy12x2xy12x212y2 ( x=y )
      xTy12x2+12y2
  • Proof of general hyperplane seperation:
    Let CRn be a convex set, HR be the affine subspace of smallest dimention containing C , we write Cε={x:Bε(x)HC}
    then Cε"relint(C)"=ε>0Cε . (relint: relative interior)
    ( Crelint(C)¯¯¯¯¯¯¯¯¯¯¯¯¯ , C is a subset of closure of relint(C) )
    Let C,D be disjoint convex sets. Then for every ε>0 the sets Aε=Cε¯¯¯¯B1ε(0) , D¯¯¯ are closed disjoint convex sets with Cε¯¯¯¯B1ε(0) bounded, and dist(Aε,D¯¯¯)ε>0 .
    So AεRn , aε0 , bεR s.t. (aε,bε) define a seperating hyperplane for Aε,D¯¯¯ .
    aTεxbεxAε , aTεxbεxD¯¯¯
    WLOG aε=1
    The sequence (a⃗ 1n)n=1 is a sequence of unit vectors and so has a convergent subsequence, say WLOG convergent to a0Rn .
    can assume sequence b1n is bonded (or else one of the sets C,D is empty)
    and so also convergent to some value b0R .
    Want to show (a0,b0) is SH for C,D , i.e., that
    aT0xb0xC,aT0xb0xD
    (Assume C is not a point, proof like above; then assume D is not a point, switch C,D .
    If C,D are points, obious true.)

Log-convexity and log-concavity
- Definition: f:RnR>0 is log-convex (log-concave) if log(f) is convex (concave).
- Convexity:
log(f(θx+(1θ)y))θlog(f(x))+(1θ)log(f(y))=log(f(x)θf(y)1θ)
f(θx+(1θ)y)f(x)θf(y)1θ
- Remark 2: log-convex convex, f(x)=elogf(x) , (composition function, QED)
concave log-concave

你可能感兴趣的:(笔记)