给定两个字符串S1和S2,求两个字符串的最长公共子序列的长度。
输入样例
ABCD
AEBD
输出样例
3
解释
S1和S2的最长公共子序列为ABD,长度为3
动态规划
L C S ( m , n ) LCS(m ,n) LCS(m,n)表示 S 1 [ 0... m ] S1[0...m] S1[0...m]和 S 2 [ 0... n ] S2[0...n] S2[0...n]的最长公共子序列的长度
S 1 [ m ] = = S 2 [ n ] : L C S ( m , n ) = 1 + L C S ( m − 1 , n − 1 ) S1[m] == S2[n]: LCS(m, n) = 1 + LCS(m - 1, n - 1) S1[m]==S2[n]:LCS(m,n)=1+LCS(m−1,n−1)
S 1 [ m ] ! = S 2 [ n ] : L C S ( m , n ) = m a x ( L C S ( m − 1 , n ) , L C S ( m , n − 1 ) ) S1[m] != S2[n]: LCS(m, n) = max(LCS(m - 1, n), LCS(m, n - 1)) S1[m]!=S2[n]:LCS(m,n)=max(LCS(m−1,n),LCS(m,n−1))
#include
#include
#include
using namespace std;
class Solution{
public:
int lengthOflongestCommonSequence(string& str1, string& str2){
int m = str1.length(), n = str2.length();
if(m == 0 || n == 0)
return 0;
dp = vector<vector<int> >(m+1, vector<int>(n+1, 0));
for(int i = 1; i < m+1; ++i){
for(int j = 1; j < n+1; ++j){
if(str1[i-1] == str2[j-1])
dp[i][j] = dp[i-1][j-1] + 1;
else
dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}
}
return dp[m][n];
}
// 找出所有的LCS的序列
// 这里形参lcs_str不可以为引用,这里需要每次调用lcs_str都重新生成一个对象
void PrintAllLCS(string& str1, string& str2, int i, int j, string lcs_str){
while(i > 0 && j > 0){
if(str1[i-1] == str2[j-1]){
lcs_str = str1[i-1] + lcs_str;
--i;
--j;
}
else{
if(dp[i-1][j] > dp[i][j-1]) //向左走
--i;
else if(dp[i-1][j] < dp[i][j-1]) //向上走
--j;
//此时向上向右均为LCS的元素
else{
PrintAllLCS(str1, str2, i-1, j, lcs_str);
PrintAllLCS(str1, str2, i, j-1, lcs_str);
return;
}
}
}
all_lcs.insert(lcs_str);
}
vector<vector<int>> dp;
set<string> all_lcs;
};
int main()
{
string s1 = "abcfbc";
string s2 = "abfcab";
Solution fir;
string lcs_str;
int res = fir.lengthOflongestCommonSequence(s1, s2);
cout << res << endl;
fir.PrintAllLCS(s1, s2, s1.length(), s2.length(), lcs_str);
set<string>::iterator iter = fir.all_lcs.begin();
while (iter != fir.all_lcs.end()) {
cout << *iter++ << endl;
}
return 0;
}
/*
4
abcb
abfb
abfc
*/
求两个字符串的最长公共子串,要求子串连续
输入例子:
bab
caba
输出例子:
2
动态规划
当 s t r 1 [ i − 1 ] = = s t r 2 [ j − 1 ] str1[i-1] == str2[j-1] str1[i−1]==str2[j−1]时, d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 dp[i][j] = dp[i - 1][j - 1] + 1 dp[i][j]=dp[i−1][j−1]+1;
只是当 s t r 1 [ i − 1 ] ! = s t r 2 [ j − 1 ] str1[i-1] != str2[j-1] str1[i−1]!=str2[j−1]时, d p [ i ] [ j ] = 0 dp[i][j] = 0 dp[i][j]=0。
class Solution {
public:
int lengthOflongestCommonSubstring(string& str1, string& str2){
int m = str1.size(), n = str2.size();
int res = 0;
vector<vector<int> > dp(m+1, vector<int>(n+1, 0));
for(int i = 1; i <= m; ++i){
for(int j = 1; j <= n; ++j){
if(str1[i-1] == str2[j-1])
dp[i][j] = dp[i-1][j-1] + 1;
else
dp[i][j] = 0;
if(res < dp[i][j])
res = dp[i][j];
}
}
return res;
}
};