- YOLOv8改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
Limiiiing
YOLOv8改进专栏YOLO网络目标检测深度学习计算机视觉
一、本文介绍本文记录的是基于UniRepLKNet的YOLOv8骨干网络改进方法研究。UniRepLKNet提出了独特的大核设计能有效捕捉图像特征,在多模态任务中展现出强大的通用感知能力。将UniRepLKNet应用到YOLOv8的骨干网络中,提升YOLOv8在目标检测任务中的精度和效率。本文在YOLOv8的基础上配置了原论文中unireplknet_a,unireplknet_f,unirepl
- conv2former模型详解及代码复现
清风AI
深度学习算法详解及代码复现深度学习人工智能python神经网络conda
模型背景在Conv2Former模型提出之前,视觉识别领域的研究主要集中在两个方向:传统卷积神经网络(ConvNets)新兴的视觉Transformer(ViTs)ConvNets通过堆叠基本模块和采用金字塔结构取得了显著进展,但往往忽略了全局上下文信息的显式建模。ViTs则通过自注意力机制有效捕捉全局依赖关系,在多个视觉任务中展现出优异性能。然而,ViTs在处理高分辨率图像时面临计算成本过高的问
- 【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!
YOLO大师
YOLO网络cnn目标检测论文阅读yolov8
YOLOv8目标检测创新改进与实战案例专栏专栏目录:YOLOv8有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLOv8基础解析+创新改进+实战案例介绍摘要视觉识别的“咆哮20年代”开始于视觉Transformer(ViTs)的引入,ViTs迅速取代了卷积神经网络(ConvNets)成为最先进的图像分类模型。然而,普通的ViT在应用于诸
- Pointnet++改进即插即用系列:全网首发DilatedReparamBlock |即插即用,提升特征提取模块性能
AICurator
Pointnet++改进专栏python深度学习pytorch
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入DilatedReparamBlock,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步骤三1.理论介绍近年来,大核卷积神经网络(ConvNets)得到了广泛的研究关注,但有两个尚未解决的关键问
- YOLOv8改进 | 注意力篇 | YOLOv8引入SimAM注意力机制
小李学AI
YOLOv8有效涨点专栏YOLO深度学习计算机视觉目标检测人工智能机器学习神经网络
1.SimAM介绍1.1摘要:在本文中,我们提出了一个概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道和空间注意力模块相比,我们的模块为层中的特征图推断3D注意力权重,而不向原始网络添加参数。具体来说,我们基于一些著名的神经科学理论,提出优化能量函数来找到每个神经元的重要性。我们进一步推导了能量函数的快速封闭式解决方案,并表明该解决方案可以用不到十行代码来实现。该模块
- 卷积神经网络-解释1
weixin_33749242
人工智能数据结构与算法
[翻译]神经网络的直观解释2017/07/2717:36这篇文章原地址为AnIntuitiveExplanationofConvolutionalNeuralNetworks,卷积神经网络的讲解非常通俗易懂。什么是卷积神经网络?为什么它们很重要?卷积神经网络(ConvNets或者CNNs)属于神经网络的范畴,已经在诸如图像识别和分类的领域证明了其高效的能力。卷积神经网络可以成功识别人脸、物体和交通
- 见过最好的神经网络CNN解释
罗晨晖
卷积神经网络CNN计算机视觉深度学习
什么是卷积神经网络?为什么它们很重要?卷积神经网络(ConvNets或者CNNs)属于神经网络的范畴,已经在诸如图像识别和分类的领域证明了其高效的能力。卷积神经网络可以成功识别人脸、物体和交通信号,从而为机器人和自动驾驶汽车提供视力。在上图中,卷积神经网络可以识别场景,也可以提供相关的标签,比如“桥梁”、“火车”和“网球”;而下图展示了卷积神经网络可以用来识别日常物体、人和动物。最近,卷积神经网络
- YOLOv5独家原创改进:大核卷积涨点系列| Shift-ConvNets,稀疏/移位操作让小卷积核也能达到大卷积核效果 | 2024年最新论文
AI小怪兽
YOLOv5原创自研YOLO目标检测计算机视觉人工智能深度学习机器学习
本文独家改进:大的卷积核设计成为使卷积神经网络(CNNs)再次强大的理想解决方案,Shift-ConvNets稀疏/移位操作让小卷积核也能达到大卷积核效果,创新十足实现涨点,助力YOLOv8在多个私有数据集和公开数据集VisDrone2019、PASCALVOC实现涨点收录YOLOv5原创自研https://blog.csdn.net/m0_63774211/category_12511931.h
- [文献翻译]Towards Good Practices for Very Deep Two-Stream ConvNets
夏迪End
摘要:深度卷积网络已经在静态图像目标识别中取得了了的巨大成功。但是,对于视频的动作识别,深度卷积网络的改进不是那么明显。我们认为这样子的结果可能有两个原因。首先,与图像中非常深的模型(例如VGGNet[13],GoogLeNet[15])相比,当前的网络体系结构(例如,双流ConvNets[12])相对较浅,因此它们的建模能力受到其深度的限制。其次,更重要的可能是,动作识别的训练数据集与Image
- Deformable Convolutional Networks
卿云阁
深度学习人工智能
欢迎来到带你读论文博客主页:卿云阁欢迎关注点赞收藏⭐️留言本文由卿云阁原创!首发时间:2024年1月28日✉️希望可以和大家一起完成进阶之路!作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢![1]github源码Deformable-ConvNets[2]论文DeformableConvolutionalNetworksDeformableconvolution文章提出了可变卷积,添加了位移
- 即插即用篇 | UniRepLKNet:用于音频、视频、点云、时间序列和图像识别的通用感知大卷积神经网络 | DRepConv
迪菲赫尔曼
YOLOv8改进实战cnn人工智能神经网络YOLO目标检测DETR深度学习
大卷积神经网络(ConvNets)近来受到了广泛研究关注,但存在两个未解决且需要进一步研究的关键问题。1)现有大卷积神经网络的架构主要遵循传统ConvNets或变压器的设计原则,而针对大卷积神经网络的架构设计仍未得到解决。2)随着变压器在多个领域的主导地位,有待研究ConvNets在视觉以外领域是否也具有强大的通用感知能力。在本文中,我们从两个方面做出了贡献。1)我们提出了四个设计大卷积神经网络的
- RTDETR 引入 UniRepLKNet:用于音频、视频、点云、时间序列和图像识别的通用感知大卷积神经网络 | DRepConv
迪菲赫尔曼
RT-DETR改进实战cnn人工智能神经网络深度学习RTDETRDETR目标检测
大卷积神经网络(ConvNets)近来受到了广泛研究关注,但存在两个未解决且需要进一步研究的关键问题。1)现有大卷积神经网络的架构主要遵循传统ConvNets或变压器的设计原则,而针对大卷积神经网络的架构设计仍未得到解决。2)随着变压器在多个领域的主导地位,有待研究ConvNets在视觉以外领域是否也具有强大的通用感知能力。在本文中,我们从两个方面做出了贡献。1)我们提出了四个设计大卷积神经网络的
- Image as Set of Points
让AI服务于我
深度学习机器学习计算机视觉
摘要什么是图像以及如何提取潜在特征?卷积网络(ConvNets)将图像视为矩形的有组织像素,并通过局部区域的卷积运算提取特征;视觉转换器(ViTs)将图像视为一系列补丁,并通过全局范围内的注意力机制提取特征。在这项工作中,我们介绍了一种直观而有前途的视觉表示范式,称为上下文聚类。上下文聚类将图像视为一组无组织点,并通过简化的聚类算法提取特征。详细地,每个点包括原始特征(例如,颜色)和位置信息(例如
- 【深度学习-图像分类】03 - VGG 论文学习与总结
CarNong_Blog
深度学习-图片分类深度学习分类学习
论文地址:VERYDEEPCONVOLUTIONALNETWORKSFORLARGE-SCALEIMAGERECOGNITION论文学习1.摘要这篇论文探讨了在大规模图像识别任务中,卷积神经网络(ConvNets)深度对其准确性的影响。作者的主要贡献是对不断增加深度的网络进行了全面评估,这些网络使用了非常小的(3x3)卷积滤波器。研究发现,通过将网络深度增加到16到19层,可以显著提高性能,超越了
- RepVGG,结构重参数化让VGG风格的ConvNets再次强大起来
lishanlu136
#卷积神经网络RepVGG算法
论文:RepVGGMakingVGG-styleConvNetsGreatAgain链接:https://arxiv.org/abs/2101.03697代码链接:https://github.com/DingXiaoH/RepVGG发表刊物:cvpr2021作者:XiaohanDing,XiangyuZhang,NingningMa,JungongHan,GuiguangDingJianSun单
- 【论文笔记】RepVGG: Making VGG-style ConvNets Great Again
chairon
论文笔记论文阅读深度学习cnn
RepVGG:MakingVGG-styleConvNetsGreatAgain目录RepVGG:MakingVGG-styleConvNetsGreatAgain1.Introduction1.1多分支网络结构的缺点1.2RepVGG优点2.ModelRe-parameterization(模型重参数化)2.1.DiracNet2.2WinogradConvolution3.BuildingRe
- RT-DETR改进策略:UniRepLKNet,大核卷积的最新成果,轻量高效的首选(全网首发)
静静AI学堂
RT-DETR实战与改进手册计算机视觉目标检测深度学习
摘要将UniRepLKNet应用到RT-DERT的改进中,经过测试,涨点明显,运算量也有下降!论文:《UniRepLKNet:用于音频、视频、点云、时间序列和图像识别的通用感知大内核ConvNet》https://arxiv.org/abs/2311.15599大核卷积神经网络(ConvNets)最近受到了广泛的研究关注,但存在两个未解决的关键问题需要进一步研究。(1)现有大核ConvNets的架
- ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders
橙黄橘绿时_Eden
深度学习python
1.关于稀疏卷积的解释:https://zhuanlan.zhihu.com/p/3823658892.答案:在深度学习领域,尤其是计算机视觉任务中,遮蔽图像建模(MaskedImageModeling,MIM)是一种自监督学习策略,其基本思想是遮蔽(或隐藏)图像中的部分信息,然后训练模型去预测这些遮蔽的部分。这种方法的一个关键点是,遮蔽的图像可以被视为一个稀疏的2D像素数组。这是因为当图像中的某
- 论文阅读——Deformable ConvNets v2
Sciws
论文阅读
论文:https://arxiv.org/pdf/1811.11168.pdf代码:https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch1.介绍可变形卷积能够很好地学习到发生形变的物体,但是论文观察到当尽管比普通卷积网络能够更适应物体形变,可变形卷积网络却可能扩展到感兴趣区域之外从而使得不相关的区域影响网络的性能,由此论文提
- UniRepLKNet:用于音频、视频、点云、时间序列和图像识别的通用感知大内核ConvNet
静静AI学堂
高质量AI论文翻译音视频
摘要https://arxiv.org/abs/2311.15599大核卷积神经网络(ConvNets)最近受到了广泛的研究关注,但存在两个未解决的关键问题需要进一步研究。(1)现有大核ConvNets的架构在很大程度上遵循传统ConvNets或变压器的设计原则,而大核ConvNets的架构设计仍未得到充分解决。(2)随着变压器在多种模式下的主导地位,尚待研究的是,ConvNets是否在视觉以外的
- 深入探究CNN和Transformer,哪种预训练模型的可迁移性更好?
Amusi(CVer)
机器学习人工智能深度学习计算机视觉神经网络
点击下方卡片,关注“CVer”公众号AI/CV重磅干货,第一时间送达深入探究ConvNetsvs.Transformers,哪种预训练模型的可迁移性更好?一文献给还在ConvNets和Transformer之间犹豫的小伙伴们:也许是时候倒向VisionTransformer预训练模型了!Highlights我们通过大量实验发现即使VisionTransformer在ImageNet上的预训练表现略
- (论文阅读32/100)Flowing convnets for human pose estimation in videos
朽月初二
论文阅读
32.文献阅读笔记简介题目Flowingconvnetsforhumanposeestimationinvideos作者TomasPfister,JamesCharles,andAndrewZisserman,ICCV,2015.原文链接https://arxiv.org/pdf/1506.02897.pdf关键词HumanPoseEstimationinVideos研究问题视频中的人体姿态估计研
- YOLO算法改进4【中阶改进篇】:添加DeformableConvolution卷积模块
梦在黎明破晓时啊
YOLO算法
论文地址:https://arxiv.org/abs/1811.11168源码地址:https://github.com/msracver/Deformable-ConvNets传统的卷积操作是将特征图分成一个个与卷积核大小相同的部分,然后进行卷积操作,每部分在特征图上的位置都是固定的。这样,对于形变比较复杂的物体,使用这种卷积的效果就可能不太好了。对于这种情况,传统做法有丰富数据集,引入更多复杂
- 人工智能:CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的知识梳理
贾斯汀玛尔斯
大数据分析-机器学习python1024程序员节人工智能神经网络
卷积神经网络(CNN)卷积神经网络(CNN),也被称为ConvNets或ConvolutionalNeuralNetworks,是一种深度学习神经网络架构,主要用于处理和分析具有网格状结构的数据,特别是图像和视频数据。CNN在计算机视觉任务中表现出色,因为它们能够有效地捕获和识别图像中的特征,具有平移不变性(translationinvariance)。CNN的关键特征包括:卷积层(Convolu
- Transformer 系列 Interpret Vision Transformers as ConvNets with Dynamic Convolutions 论文阅读笔记
乄洛尘
Transformertransformer论文阅读笔记
Transformer系列InterpretVisionTransformersasConvNetswithDynamicConvolutions论文阅读笔记一、Abstract二、引言三、相关工作VisionTransformers动态卷积Transformer和CNN的联系四、统一的视角4.1基础:自注意力4.2将Self-Attention视为动态卷积4.3统一的框架Kernelbankke
- 12、理解与可视化卷积神经网络
qxdx.org
计算机视觉卷积神经网络可视化卷积神经网络学习到了什么
目录12.1可视化卷积神经网络学习到的东西12.1.1可视化激活和第一层权重12.1.2找到对神经元有最大激活的图像12.1.3用t-SNE嵌入代码12.1.4遮挡部分图像12.1.5可视化数据梯度及其他文献12.1.6基于CNN代码重构原始图像12.1.7保存了多少空间信息?12.1.8根据图像属性绘制性能12.2玩弄ConvNets12.3将ConvNets的结果与人类标签比较12.1可视化卷
- 【通俗理解】CNN卷积神经网络 - 附带场景举例
毒爪的小新
#DLcnn人工智能神经网络DL深度学习
一.CNN算法概述CNN的全称是ConvolutionalNeuralNetworks,ConvNets,称之为卷积神经网络,是深度学习的经典算法之一。CNN一般用于图片分类、检索、人脸识别、目标定位等。在常规的图像处理的过程中,存在以下两个问题:图像需要处理的数据量太大,导致成本很高,效率很低图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高。而CNN很好的解决了这个问题:能够将大
- 论文阅读:Image as Set of Points
专注认真努力
论文阅读聚类算法
摘要卷积网络认为图像是带有规则形状的有组织的像素点,通过卷积操作对局部区域进行特征提取。ViTs把图像认为是块的序列,通过注意力机制在全局范围内进行特征提取。我们提出了一种不同于ConvNets和ViTs的特征提取结构Contetxclusters(CoCs)引言CoCs把图片视为无组织的点的集合,通过简单的聚类算法进行特征提取。具体来说,每个点包含原始特征(比如颜色等等)和位置信息(坐标),通过
- python用TensorFlow 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|附代码数据
数据挖掘深度学习机器学习算法
原文链接:http://tecdat.cn/?p=26230原文出处:拓端数据部落公众号最近我们被客户要求撰写关于卷积神经网络CNN的研究报告,包括一些图形和统计输出。什么是CNN本文演示了如何训练一个简单的卷积神经网络(CNN)来对图像进行分类。ConvolutionalNeuralNetworks(ConvNets或CNNs)是一类神经网络,已被证明在图像识别和分类等领域非常有效。与传统的多层
- python用TensorFlow 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|附代码数据
数据挖掘深度学习机器学习算法
原文链接:http://tecdat.cn/?p=26230原文出处:拓端数据部落公众号最近我们被客户要求撰写关于卷积神经网络CNN的研究报告,包括一些图形和统计输出。什么是CNN本文演示了如何训练一个简单的卷积神经网络(CNN)来对图像进行分类。ConvolutionalNeuralNetworks(ConvNets或CNNs)是一类神经网络,已被证明在图像识别和分类等领域非常有效。与传统的多层
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL