- tensorflow学习笔记(二):机器学习必备API
我愛大泡泡
深度学习机器学习深度学习
前一节介绍了一些最基本的概念和使用方法。因为我个人的最终目的还是在深度学习上,所以一些深度学习和机器学习模块是必须要了解的,这其中包括了tf.train、tf.contrib.learn、还有如训练神经网络必备的tf.nn等API。这里准备把常用的API和使用方法按照使用频次进行一个排列,可以当做一个以后使用参考。这一节介绍的内容可以有选择的看。而且最全的信息都在TensorFlow的API里面了
- TensorFlow学习笔记
SIENTIST
使用“图”(graph)表示计算任务;在被称为“会话”(session)的“上下文”(context)中执行图;使用“张量”(tensor)表示数据,tensor可以任务是一个n维的数组或列表;通过“变量”(varible)维护状态;使用feed和fetch可以为任意的操作赋值或从中获取数据tensorflow.jpggraph中的节点称为op(operation),每个op能把输入的tensor
- tensorflow学习笔记-图像分类模型-AlexNet实现
飞天小小猫
之前一篇文章中总结了CNN中图像分类的经典模型,包括论文解读和分析,但是不写个代码搞一把总觉得虚~啊哈哈这个系列里准备把这些个经典模型用tensorflow实现一下。参考之前引用的blog:深度学习AlexNet模型详细分析上代码吧。参照着模型看更好读一些。'''图像分类模型的tensorflow实现之--AlexNetTensorflowVersion:1.4PythonVersion:3.6R
- Tensorflow学习笔记(六)——卷积神经网络
七月七叶
实现对fashion-minist分类: (1)引包importosos.environ["CUDA_VISIBLE_DEVICES"]="-1"importmatplotlibasmplimportmatplotlib.pyplotasplt%matplotlibinlineimportnumpyasnpimportpandasaspdimportsklearnimportsysimpor
- tensorflow vgg基于cifar-10进行训练
GOGOYAO
最近接触tf,想在cifar-10数据集上训练下vgg网络。最开始想先跑vgg16,搜了一大圈,没有一个可以直接跑的(我参考【深度学习系列】用PaddlePaddle和Tensorflow实现经典CNN网络Vgg跑出来的精度就10%),要么是代码是针对1000种分类的,要么是预训练好的。最后在Tensorflow学习笔记:CNN篇(6)——CIFAR-10数据集VGG19实现找到了一个vgg19的
- 深度学习与Tensorflow学习笔记2 ——回调函数callbacks和Tensorboard
木头里有虫911
上一期我们从Fashion-mnist数据集开始,使用Tensorflow.keras搭建一个简单的神经网络来处理分类问题。通过这个简单例子我们熟悉了tf.keras的调用。本期我们来学习keras下面的回调函数callbacks的用法。这里,简单的再说一句,Tensorflow有非常完善的官方文档,相当于学习手册。(而且还有中文网站:https://tensorflow.google.cn/)在
- TensorFlow学习笔记--(4)神经网络模型-数据集预处理
Postlude
TensorFlowtensorflow学习笔记
神经网络初步以scikit-leran鸢尾花为例通过scikit-learn库自带的鸢尾花数据集来测试数据的读入fromsklearnimportdatasetsfrompandasimportDataFrameimportpandasaspdx_data=datasets.load_iris().data#.data返回iris数据集所有输入特征y_data=datasets.load_iris
- tensorflow学习笔记:识别图中模糊的手写体数字(2)基于多层神经网络以及TensorBoard可视化网络
heart_ace
tensorflow学习笔记tensorflow神经网络可视化python深度学习
tensorflow学习笔记:识别图中模糊的手写体数字(2)基于多层神经网络以及TensorBoard可视化运行环境tensorflow-gpu1.11.0python3.6.9importtensorflowastfimportos读取MINIST数据集fromtensorflow.examples.tutorials.mnistimportinput_datamnist=input_data.
- tensorflow学习笔记(十):GAN生成手写体数字(MNIST)
陈小虾
深度学习框架实战GAN手写体生成GAN实战
文章目录一、GAN原理二、项目实战2.1项目背景2.2网络描述2.3项目实战一、GAN原理生成对抗网络简称GAN,是由两个网络组成的,一个生成器网络和一个判别器网络。这两个网络可以是神经网络(从卷积神经网络、循环神经网络到自编码器)。生成器从给定噪声中(一般是指均匀分布或者正态分布)产生合成数据,判别器分辨生成器的的输出和真实数据。前者试图产生更接近真实的数据,相应地,后者试图更完美地分辨真实数据
- tensorflow学习笔记3
抬头挺胸才算活着
CreateaTensorFlowobjectthatreturnsx+yifx>y,andx-yotherwise.tf.cond相当于其他编程语言的?,比较要用tf.greatertf.cond(tf.greater(x,y),lambda:tf.add(x,y),lambda:tf.subtract(x,y))tf.case第一个参数是字典或者tuples都可以,只要是一对对,然后每一对第一
- 8月10日TensorFlow学习笔记——TensorFlow 数据类型、创建、索引与切片、维度变换、前向传播
Ashen_0nee
tensorflow学习python
文章目录前言一、Numpy回归问题实战1、Step1:computeloss2、Step2:computeGradientandupdate二、手写数字识别1、Step1:XandY2、Step2:networkstructure3、Step3:循环计算Loss、梯度并更新参数三、数据类型1、tf.constant()2、TensorProperty(1)、.device(2)、.numpy()(
- TensorFlow学习笔记--(3)张量的常用运算函数
Postlude
TensorFlowtensorflow学习笔记
损失函数及求偏导通过tf.GradientTape函数来指定损失函数的变量以及表达式最后通过gradient(%损失函数%,%偏导对象%)来获取求偏导的结果独热编码给出一组特征值来对图像进行分类可以用独热编码0的概率是第0种1的概率是第1种0的概率是第二种tf.one_hot(%某标签值%,%分类数%)这里还没太看懂结果的3X3矩阵是怎么来的如果单纯的是因为有几种类型就有几个1那传入的标签值参数就
- tensorflow学习笔记--张量和基本运算
Yohance0_0
tensorflow框架学习深度学习
张量张量的阶和数据类型(1)张量的属性:graph:张量所属的默认图op:张量的操作名name:张量的字符串描述shape:张量形状一维{5}二维{2,3}三维{2,3,4}importtensorflowastfimportosos.environ['TF_CPP_MIN_LOG_LEVEL']='2'a=tf.constant(5.0)graph=tf.get_default_graph()p
- tensorflow学习笔记----2.常用函数1
qq_35821503
tensorflow深度学习
1.强制tensor转换为该数据类型tf.cast(张量名,dtype=数据类型)x1=tf.constant([1,2,3],dtype=tf.float64)print(x1)x2=tf.cast(x1,dtype=tf.int32)print("x2=",x2)运行结果:2.计算张量维度上元素的最小值tf.reduce_min(张量名)print("min=",tf.reduce_min(x
- TensorFlow学习笔记----3.常用函数2
qq_35821503
tensorflow深度学习
一.Gradienttape我们可以在with结构中,使用Gradienttape实现某个函数对指定参数的求导运算配合上一个文件讲的variable函数可以实现损失函数loss对参数w的求导计算with结构记录计算过程,gradient求出张量的梯度withtf.GradientTape()astape:若干个计算过程grad=tape.gradient(函数,对谁求导)withtf.Gradie
- TensorFlow学习笔记--MLP多层感知机识别手写数字1-9
北航_Curry
TensorFlow2.0tensorflow神经网络深度学习1024程序员节
#简单粗暴tensorflow2.0合集视频p7-p9多层感知机(MLP)利用多层感知机MLP实现手写数字0-9的mnist数据集的识别importtensorflowastfimportnumpyasnp#数据的获取和预处理classMNISTLoader():def__init__(self):mnist=tf.keras.datasets.mnist(self.train_data,self
- Tensorflow学习笔记--张量与会话
IT修炼家
tensorflow
张量张量是Tensorflow的核心组件之一,可以理解为Tensorflow就是张量和流组成的,张量可以简单地理解为多维数组,我的理解就是张量是一个数据模板,深度学习所有数据首先转换为张量的格式再进行计算,然后得到学习结果。横向看张量是整形、浮点型的数,另外注意张量计算中,有些计算需要张量数据的类型相同,否则会报错。纵向看张量是不同维度的“数组”,零阶张量是一个数,是计算的最小单元;二阶张量是向量
- tensorflow学习笔记--Variable变量
爱吃小白兔的大萝卜
tensorflow学习python
tf.Variable()变量:创建、初始化、保存、加载。1.创建Variable()构造函数需要变量的初始值,即任何形状和类型的张量Tensor。初始值定义其形状和类型,一旦构建,变量的类型和形状即确定。如果想要稍后改变变量的形状,需要带上validate_shape=False的赋值操作。#创建一个变量w=tf.Variable(tensor,name=)#运算y=tf.matmul(w,其他
- tensorflow学习笔记:张量介绍以及张量操作函数
heart_ace
tensorflow学习笔记深度学习tensorflow张量
张量(tensor)tensorflow程序使用tensor数据结构来代表所有的数据,计算图中,操作间传递的数据都是tensor。tensor堪为一个n维的数组或列表,每个tensor中包含类型(type)、阶(rank)和形状(shape)。tensor类型tensor类型python类型描述DF_FLOATtf.float3232位浮点数DF_DOUBLEtf.float6461为浮点数DF_
- [TensorFlow 学习笔记-03]TensorFlow简介
caicaiatnbu
TensorFlow学习笔记深度学习TensorFlow
[版权说明]TensorFlow学习笔记参考:李嘉璇著TensorFlow技术解析与实战黄文坚唐源著TensorFlow实战郑泽宇顾思宇著TensorFlow实战Google深度学习框架乐毅王斌著深度学习-Caffe之经典模型详解与实战TensorFlow中文社区http://www.tensorfly.cn/极客学院著TensorFlow官方文档中文版TensorFlow官方文档英文版以及各位大
- TensorFlow学习笔记--(2)张量的常用运算函数
Postlude
TensorFlowtensorflow学习笔记
张量的取值函数求张量的平均值:tf.reduce.mean(%张量名%)求张量的最小值:tf.reduce_min(%张量名%)求张量的最大值:tf.reduce_max(%张量名%)求张量的和:tf.reduce_sum(%张量名%)其次,对于上述所有操作都可在函数后添加一个新的参数axis=%维度%axis=0代表第一维度axis=1代表第二维度以此类推张量的四则运算加减乘除次方/开方特别注意
- Tensorflow学习笔记:1-tensorflow-gpu部署 & keras简单使用-2023-2-12
Merlin雷
python机器学习笔记tensorflowkeras
tensorflow-gpu学习笔记:部署&keras简单使用-2023-2-12tensorflow2.6.0GPU版本部署及测试0-查看NVIDIA驱动版本1-安装2-测试3-简单使用4-tf.keras概述1、(单层)线性回归1、导包&数据读取和观察2、预测目标与损失函数3、创建模型4、训练5、预测2、多层感知器3、逻辑回归1、sigmoid函数2、交叉熵损失函数3、模型预测4、画图看损失和
- TensorFlow学习笔记--(1)张量的随机生成
Postlude
TensorFlowtensorflow学习笔记
张量的生成如何判断一个张量的维数:看张量的中括号有几层012:零维数列[246]:一维向量[[123][456]]:二维数组两行三列第一行数据为123第二行数据为456以此类推n维张量有n层中括号tf.zeros(%指定一个张量的维数%)生成一个全0的张量tf.ones(%指定一个张量的维数%)生成一个全1的张量tf.fill(%指定一个张量的维数%,%Value%)生成一个全为Value的张量随
- Tensorflow学习笔记:Keras函数式API
凿井而饮
tensorflow2pythontensorflow深度学习
目录一、简介二、使用相同的层计算图定义多个模型三、模型可像层一样被调用四、处理复杂计算图拓扑1.多输入多输出模型2.建立一个小的ResNet五、共享层六、提取和重用层计算图节点七、使用自定义层扩展API八、何时使用函数式API1.函数式API的优势2.函数式API的劣势九、混合搭配的API式样1.将函数式模型用作子类化模型的一部分:2.在函数式API中使用任何子类化层或模型一、简介函数式API创建
- tensorflow学习笔记--机器学习基础知识--(1)基本图像分类
爱玩的阿是
学习笔记pythontensorflow机器学习深度学习
学习教材是tensorflow官网上的新手教程为了让自己有更深的印象和理解,将自己的学习笔记记录基础分类:对于衣服的图片分类本指南训练了一个神经网络模型来对衣服的图像进行分类,例如运动鞋和衬衫。本指南使用tf.keras在TensorFlow中构建和训练模型。from__future__importabsolute_import,division,print_function,unicode_li
- TensorFlow学习笔记(未完待续)
苏钟白
tensorflow学习笔记
文章目录tf.Graph().as_default()sessiontensorflow.placeholder()tf.summarytf.Graph().as_default()withtf.Graph().as_default():withtf.device('/gpu:'+str(GPU_INDEX)):TensorFlow中所有计算都会被转化为计算图上的节点。是一个通过计算图的形式来表述
- TensorFlow学习笔记(四)—— 入门 —— 基本使用
tiankong19999
TensorFlowTensorFlow入门
教程地址:TensorFlow中文社区基本使用使用TensorFlow,你必须明白TensorFlow:使用图(graph)来表示计算任务.在被称之为会话(Session)的上下文(context)中执行图.使用tensor表示数据.通过变量(Variable)维护状态.使用feed和fetch可以为任意的操作(arbitraryoperation)赋值或者从其中获取数据.综述TensorFlow
- TensorFlow学习笔记(四)——tf.data API
七月七叶
tf.data.Datasetcsv文件读取为dataset并用于训练tfrecord1.tf.data.Datasettf.data.Dataset使用流程:(1)以源数据创建一个dataset;(2)对数据进行预处理;(3)遍历整个dataset,进行数据处理1.1SourceDatasets(1)由数组、列表等创建,将其转化为tensor#创建一个datasetdataset=tf.data
- tensorflow学习笔记————分类MNIST数据集
san.hang
人工智能python
在使用tensorflow分类MNIST数据集中,最容易遇到的问题是下载MNIST样本的问题。一般是通过使用tensorflow内置的函数进行下载和加载,fromtensorflow.examples.tutorials.mnistimportinput_datamnist=input_data.read_data_sets("MNIST_data",one_hot=True)但是我使用时遇到了“
- tensorflow学习笔记:运算函数、复数操作函数、规约计算、 序列比较与索引提取以及错误类
heart_ace
tensorflow学习笔记运算函数tensorflow错误类规约计算函数索引提前
运算函数、复数操作函数、规约计算、序列比较与索引提取以及错误类前一章提到了许多关于张量的操作函数,这里接着将一些运算函数、复数操作函数、规约计算、序列比较与索引提取以及错误类记录下来。算数运算函数函数描述tf.asign(x,y,name=None)令x=ytf.add(x,y,name=None)求和tf.subtract(x,y,name=None)减法tf.multiply(x,y,name
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb