工程地址:https://github.com/yizt/numpy_neuron_network
基础知识
0_1-全连接层、损失函数的反向传播
0_2_1-卷积层的反向传播-单通道、无padding、步长1
0_2_2-卷积层的反向传播-多通道、无padding、步长1
0_2_3-卷积层的反向传播-多通道、无padding、步长不为1
0_2_4-卷积层的反向传播-多通道、有padding、步长不为1
0_2_5-池化层的反向传播-MaxPooling、AveragePooling、GlobalAveragePooling、GlobalMaxPooling
0_3-激活函数的反向传播-ReLU、LeakyReLU、PReLU、ELU、SELU
0_4-优化方法-SGD、AdaGrad、RMSProp、Adadelta、Adam
DNN练习
1_1_1-全连接神经网络做线性回归
1_1_2-全连接神经网络做mnist手写数字识别
CNN练习
2_1-numpy卷积层实现
2_2-numpy池化层实现
2_3-numpy-cnn-mnist手写数字识别
本文目录
参考池化层的反向传播中公式(1)
import numpy as np
def max_pooling_forward(z, pooling, strides=(2, 2), padding=(0, 0)):
"""
最大池化前向过程
:param z: 卷积层矩阵,形状(N,C,H,W),N为batch_size,C为通道数
:param pooling: 池化大小(k1,k2)
:param strides: 步长
:param padding: 0填充
:return:
"""
N, C, H, W = z.shape
# 零填充
padding_z = np.lib.pad(z, ((0, 0), (0, 0), (padding[0], padding[0]), (padding[1], padding[1])), 'constant', constant_values=0)
# 输出的高度和宽度
out_h = (H + 2 * padding[0] - pooling[0]) // strides[0] + 1
out_w = (W + 2 * padding[1] - pooling[1]) // strides[1] + 1
pool_z = np.zeros((N, C, out_h, out_w))
for n in np.arange(N):
for c in np.arange(C):
for i in np.arange(out_h):
for j in np.arange(out_w):
pool_z[n, c, i, j] = np.max(padding_z[n, c,
strides[0] * i:strides[0] * i + pooling[0],
strides[1] * j:strides[1] * j + pooling[1]])
return pool_z
参考池化层的反向传播中公式(6)
def max_pooling_backward(next_dz, z, pooling, strides=(2, 2), padding=(0, 0)):
"""
最大池化反向过程
:param next_dz:损失函数关于最大池化输出的损失
:param z: 卷积层矩阵,形状(N,C,H,W),N为batch_size,C为通道数
:param pooling: 池化大小(k1,k2)
:param strides: 步长
:param padding: 0填充
:return:
"""
N, C, H, W = z.shape
_, _, out_h, out_w = next_dz.shape
# 零填充
padding_z = np.lib.pad(z, ((0, 0), (0, 0), (padding[0], padding[0]), (padding[1], padding[1])), 'constant',
constant_values=0)
# 零填充后的梯度
padding_dz = np.zeros_like(padding_z)
for n in np.arange(N):
for c in np.arange(C):
for i in np.arange(out_h):
for j in np.arange(out_w):
# 找到最大值的那个元素坐标,将梯度传给这个坐标
flat_idx = np.argmax(padding_z[n, c,
strides[0] * i:strides[0] * i + pooling[0],
strides[1] * j:strides[1] * j + pooling[1]])
h_idx = strides[0] * i + flat_idx // pooling[1]
w_idx = strides[1] * j + flat_idx % pooling[1]
padding_dz[n, c, h_idx, w_idx] += next_dz[n, c, i, j]
# 返回时剔除零填充
return _remove_padding(padding_dz, padding)
参考池化层的反向传播中公式(2)
def avg_pooling_forward(z, pooling, strides=(2, 2), padding=(0, 0)):
"""
平均池化前向过程
:param z: 卷积层矩阵,形状(N,C,H,W),N为batch_size,C为通道数
:param pooling: 池化大小(k1,k2)
:param strides: 步长
:param padding: 0填充
:return:
"""
N, C, H, W = z.shape
# 零填充
padding_z = np.lib.pad(z, ((0, 0), (0, 0), (padding[0], padding[0]), (padding[1], padding[1])), 'constant',
constant_values=0)
# 输出的高度和宽度
out_h = (H + 2 * padding[0] - pooling[0]) // strides[0] + 1
out_w = (W + 2 * padding[1] - pooling[1]) // strides[1] + 1
pool_z = np.zeros((N, C, out_h, out_w))
for n in np.arange(N):
for c in np.arange(C):
for i in np.arange(out_h):
for j in np.arange(out_w):
pool_z[n, c, i, j] = np.mean(padding_z[n, c,
strides[0] * i:strides[0] * i + pooling[0],
strides[1] * j:strides[1] * j + pooling[1]])
return pool_z
参考池化层的反向传播中公式(9)
def avg_pooling_backward(next_dz, z, pooling, strides=(2, 2), padding=(0, 0)):
"""
平均池化反向过程
:param next_dz:损失函数关于最大池化输出的损失
:param z: 卷积层矩阵,形状(N,C,H,W),N为batch_size,C为通道数
:param pooling: 池化大小(k1,k2)
:param strides: 步长
:param padding: 0填充
:return:
"""
N, C, H, W = z.shape
_, _, out_h, out_w = next_dz.shape
# 零填充
padding_z = np.lib.pad(z, ((0, 0), (0, 0), (padding[0], padding[0]), (padding[1], padding[1])), 'constant',
constant_values=0)
# 零填充后的梯度
padding_dz = np.zeros_like(padding_z)
for n in np.arange(N):
for c in np.arange(C):
for i in np.arange(out_h):
for j in np.arange(out_w):
# 每个神经元均分梯度
padding_dz[n, c,
strides[0] * i:strides[0] * i + pooling[0],
strides[1] * j:strides[1] * j + pooling[1]] += next_dz[n, c, i, j] / (pooling[0] * pooling[1])
# 返回时剔除零填充
return _remove_padding(padding_dz, padding)
参考池化层的反向传播中公式(3)
def global_max_pooling_forward(z):
"""
全局最大池化前向过程
:param z: 卷积层矩阵,形状(N,C,H,W),N为batch_size,C为通道数
:return:
"""
return np.max(np.max(z, axis=-1), -1)
参考池化层的反向传播中公式(10)
def global_max_pooling_forward(next_dz, z):
"""
全局最大池化反向过程
:param next_dz: 全局最大池化梯度,形状(N,C)
:param z: 卷积层矩阵,形状(N,C,H,W),N为batch_size,C为通道数
:return:
"""
N, C, H, W = z.shape
dz = np.zeros_like(z)
for n in np.arange(N):
for c in np.arange(C):
# 找到最大值所在坐标,梯度传给这个坐标
idx = np.argmax(z[n, c, :, :])
h_idx = idx // W
w_idx = idx % W
dz[n, c, h_idx, w_idx] = next_dz[n, c]
return dz
参考池化层的反向传播中公式(4)
def global_avg_pooling_forward(z):
"""
全局平均池化前向过程
:param z: 卷积层矩阵,形状(N,C,H,W),N为batch_size,C为通道数
:return:
"""
return np.mean(np.mean(z, axis=-1), axis=-1)
参考池化层的反向传播中公式(12)
def global_avg_pooling_backward(next_dz, z):
"""
全局平均池化反向过程
:param next_dz: 全局最大池化梯度,形状(N,C)
:param z: 卷积层矩阵,形状(N,C,H,W),N为batch_size,C为通道数
:return:
"""
N, C, H, W = z.shape
dz = np.zeros_like(z)
for n in np.arange(N):
for c in np.arange(C):
# 梯度平分给相关神经元
dz[n, c, :, :] += next_dz[n, c] / (H * W)
return dz
对于最大池化层的前向和后向过程使用Cython编译加速,实际测试发现耗时减少约20%,貌似提升效果不大;对Cython使用不精通,哪位大佬知道如何改进,请不吝赐教,感谢!!
%load_ext Cython
The Cython extension is already loaded. To reload it, use:
%reload_ext Cython
%%cython
cimport cython
cimport numpy as np
cpdef max_pooling_forward(np.ndarray[double, ndim=4] z,
tuple pooling,
tuple strides=(2, 2),
tuple padding=(0, 0)):
"""
最大池化前向过程
:param z: 卷积层矩阵,形状(N,C,H,W),N为batch_size,C为通道数
:param pooling: 池化大小(k1,k2)
:param strides: 步长
:param padding: 0填充
:return:
"""
cdef unsigned int N = z.shape[0]
cdef unsigned int C = z.shape[1]
cdef unsigned int H = z.shape[2]
cdef unsigned int W = z.shape[3]
# 零填充
cdef np.ndarray[double, ndim= 4] padding_z = np.lib.pad(z, ((0, 0), (0, 0),
(padding[0], padding[0]), (padding[1], padding[1])),
'constant', constant_values=0)
# 输出的高度和宽度
cdef unsigned int out_h = (H + 2 * padding[0] - pooling[0]) // strides[0] + 1
cdef unsigned int out_w = (W + 2 * padding[1] - pooling[1]) // strides[1] + 1
cdef np.ndarray[double, ndim= 4] pool_z = np.zeros((N, C, out_h, out_w)).astype(np.float64)
cdef unsigned int n, c, i, j
for n in np.arange(N):
for c in np.arange(C):
for i in np.arange(out_h):
for j in np.arange(out_w):
pool_z[n, c, i, j] = np.max(padding_z[n, c,
strides[0] * i:strides[0] * i + pooling[0],
strides[1] * j:strides[1] * j + pooling[1]])
return pool_z
%%cython
cimport cython
cimport numpy as np
cpdef max_pooling_backward(np.ndarray[double, ndim=4] next_dz,
np.ndarray[double, ndim=4] z,
tuple pooling,
tuple strides=(2, 2),
tuple padding=(0, 0)):
"""
最大池化反向过程
:param next_dz:损失函数关于最大池化输出的损失
:param z: 卷积层矩阵,形状(N,C,H,W),N为batch_size,C为通道数
:param pooling: 池化大小(k1,k2)
:param strides: 步长
:param padding: 0填充
:return:
"""
cdef unsigned int N = z.shape[0]
cdef unsigned int C = z.shape[1]
cdef unsigned int H = z.shape[2]
cdef unsigned int W = z.shape[3]
cdef unsigned int out_h = next_dz.shape[2]
cdef unsigned int out_w = next_dz.shape[3]
# 零填充
cdef np.ndarray[double, ndim = 4] padding_z = np.lib.pad(z, ((0, 0), (0, 0),
(padding[0], padding[0]),
(padding[1], padding[1])),
'constant', constant_values=0)
# 零填充后的梯度
cdef np.ndarray[double, ndim = 4] padding_dz = np.zeros_like(padding_z).astype(np.float64)
cdef unsigned int n, c, i, j
for n in np.arange(N):
for c in np.arange(C):
for i in np.arange(out_h):
for j in np.arange(out_w):
# 找到最大值的那个元素坐标,将梯度传给这个坐标
flat_idx = np.argmax(padding_z[n, c,
strides[0] * i:strides[0] * i + pooling[0],
strides[1] * j:strides[1] * j + pooling[1]])
h_idx = strides[0] * i + flat_idx // pooling[1]
w_idx = strides[1] * j + flat_idx % pooling[1]
padding_dz[n, c, h_idx, w_idx] += next_dz[n, c, i, j]
# 返回时剔除零填充
return _remove_padding(padding_dz, padding) # padding_z[:, :, padding[0]:-padding[0], padding[1]:-padding[1]]