在OpenGL中,任何事物都在3D空间中,而屏幕和窗口却是2D像素数组,这导致OpenGL的大部分工作都是关于把3D坐标转变为适应你屏幕的2D像素。3D坐标转为2D坐标的处理过程是由OpenGL的图形渲染管线(Graphics Pipeline,大多译为管线,实际上指的是一堆原始图形数据途经一个输送管道,期间经过各种变化处理最终出现在屏幕的过程)管理的。图形渲染管线可以被划分为两个主要部分:第一部分把你的3D坐标转换为2D坐标,第二部分是把2D坐标转变为实际的有颜色的像素。
图形渲染管线接受一组3D坐标,然后把它们转变为你屏幕上的有色2D像素输出。图形渲染管线可以被划分为几个阶段,每个阶段将会把前一个阶段的输出作为输入。所有这些阶段都是高度专门化的(它们都有一个特定的函数),并且很容易并行执行。正是由于它们具有并行执行的特性,当今大多数显卡都有成千上万的小处理核心,它们在GPU上为每一个(渲染管线)阶段运行各自的小程序,从而在图形渲染管线中快速处理你的数据。这些小程序叫做着色器(Shader)。
有些着色器允许开发者自己配置,这就允许我们用自己写的着色器来替换默认的。这样我们就可以更细致地控制图形渲染管线中的特定部分了,而且因为它们运行在GPU上,所以它们可以给我们节约宝贵的CPU时间。OpenGL着色器是用OpenGL着色器语言(OpenGL Shading Language, GLSL)写成的。
首先,我们以数组的形式传递3个3D坐标作为图形渲染管线的输入,用来表示一个三角形,这个数组叫做顶点数据(Vertex Data);顶点数据是一系列顶点的集合。一个顶点(Vertex)是一个3D坐标的数据的集合。而顶点数据是用顶点属性(Vertex Attribute)表示的,它可以包含任何我们想用的数据,但是简单起见,我们还是假定每个顶点只由一个3D位置(译注1)和一些颜色值组成的吧。
图形渲染管线的第一个部分是顶点着色器(Vertex Shader),它把一个单独的顶点作为输入。顶点着色器主要的目的是把3D坐标转为另一种3D坐标(后面会解释),同时顶点着色器允许我们对顶点属性进行一些基本处理。
图元装配(Primitive Assembly)阶段将顶点着色器输出的所有顶点作为输入(如果是GL_POINTS,那么就是一个顶点),并所有的点装配成指定图元的形状;本节例子中是一个三角形。
图元装配阶段的输出会传递给几何着色器(Geometry Shader)。几何着色器把图元形式的一系列顶点的集合作为输入,它可以通过产生新顶点构造出新的(或是其它的)图元来生成其他形状。例子中,它生成了另一个三角形。
几何着色器的输出会被传入光栅化阶段(Rasterization Stage),这里它会把图元映射为最终屏幕上相应的像素,生成供片段着色器(Fragment Shader)使用的片段(Fragment)。在片段着色器运行之前会执行裁切(Clipping)。裁切会丢弃超出你的视图以外的所有像素,用来提升执行效率。
可以看到,图形渲染管线非常复杂,它包含很多可配置的部分。然而,对于大多数场合,我们只需要配置顶点和片段着色器就行了。几何着色器是可选的,通常使用它默认的着色器就行了。
FirstTriangle类 初始化 中设置VBO,VAO并绑定。
渲染类render 中绑定VAO并画三角形。
"""
glfw_FirstTriangle.py
Author: dalong10
Description: Draw a Triagle, learning OPENGL
"""
import glutils #Common OpenGL utilities,see glutils.py
import sys, random, math
import OpenGL
from OpenGL.GL import *
from OpenGL.GL.shaders import *
import numpy
import numpy as np
import glfw
strVS = """
#version 330 core
layout(location = 0) in vec3 vertexPosition_modelspace;
void main(){
gl_Position.xyz = vertexPosition_modelspace;
gl_Position.w = 1.0;
}
"""
strFS = """
#version 330 core
out vec3 color;
void main(){
color = vec3(1,0,0);
}
"""
class FirstTriangle:
def __init__(self, side):
self.side = side
# load shaders
self.program = glutils.loadShaders(strVS, strFS)
glUseProgram(self.program)
s = side/1.0
vertices = [
-s, -s, 0,
s, -s, 0,
0, s, 0
]
# set up vertex array object (VAO)
self.vao = glGenVertexArrays(1)
glBindVertexArray(self.vao)
# set up VBOs
vertexData = numpy.array(vertices, numpy.float32)
self.vertexBuffer = glGenBuffers(1)
glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
glBufferData(GL_ARRAY_BUFFER, 4*len(vertexData), vertexData,
GL_STATIC_DRAW)
#enable arrays
self.vertIndex = 0
glEnableVertexAttribArray(self.vertIndex)
# set buffers
glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, None)
# unbind VAO
glBindVertexArray(0)
def render(self):
# use shader
glUseProgram(self.program)
# bind VAO
glBindVertexArray(self.vao)
# draw
glDrawArrays(GL_TRIANGLES, 0, 3)
# unbind VAO
glBindVertexArray(0)
if __name__ == '__main__':
import sys
import glfw
import OpenGL.GL as gl
def on_key(window, key, scancode, action, mods):
if key == glfw.KEY_ESCAPE and action == glfw.PRESS:
glfw.set_window_should_close(window,1)
# Initialize the library
if not glfw.init():
sys.exit()
# Create a windowed mode window and its OpenGL context
window = glfw.create_window(640, 480, "Hello World", None, None)
if not window:
glfw.terminate()
sys.exit()
# Make the window's context current
glfw.make_context_current(window)
# Install a key handler
glfw.set_key_callback(window, on_key)
# Loop until the user closes the window
while not glfw.window_should_close(window):
# Render here
width, height = glfw.get_framebuffer_size(window)
ratio = width / float(height)
gl.glViewport(0, 0, width, height)
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
gl.glClearColor(0.0,0.0,4.0,0.0)
firstTriangle0 = FirstTriangle(1.0)
# render
firstTriangle0.render()
# Swap front and back buffers
glfw.swap_buffers(window)
# Poll for and process events
glfw.poll_events()
glfw.terminate()