Manacher's Algorithm 马拉车算法操作及原理
package advanced_001;
public class Code_Manacher {
public static char[] manacherString(String str) {
char[] charArr = str.toCharArray();
char[] res = new char[str.length() * 2 + 1];
int index = 0;
for (int i = 0; i != res.length; i++) {
res[i] = (i & 1) == 0 ? '#' : charArr[index++];
}
return res;
}
public static int maxLcpsLength(String str) {
if (str == null || str.length() == 0) {
return 0;
}
char[] charArr = manacherString(str);
int[] pArr = new int[charArr.length];
int C = -1;
int R = -1;
int max = Integer.MIN_VALUE;
for (int i = 0; i != charArr.length; i++) {
pArr[i] = R > i ? Math.min(pArr[2 * C - i], R - i) : 1;
while (i + pArr[i] < charArr.length && i - pArr[i] > -1) {
if (charArr[i + pArr[i]] == charArr[i - pArr[i]])
pArr[i]++;
else {
break;
}
}
if (i + pArr[i] > R) {
R = i + pArr[i];
C = i;
}
max = Math.max(max, pArr[i]);
}
return max - 1;
}
public static void main(String[] args) {
String str1 = "abc1234321ab";
System.out.println(maxLcpsLength(str1));
}
}
问题:查找一个字符串的最长回文子串
首先叙述什么是回文子串:回文:就是对称的字符串,或者说是正反一样的
当然,不一样。子序列可以不连续,子串必须连续。
举个例子,”123”的子串包括1,2,3,12,23,123(一个字符串本身是自己的最长子串),而它的子序列是任意选出元素组成,他的子序列有1,2,3,12,13,23,123,””,空其实也算,但是本文主要是想叙述回文,没意义。
子序列,每个元素都可以选或者不选,所以有2的n次方个子序列(包括空)
子串:以一位置开头,有n个子串,以二位置开头,有n-1个子串,以此类推,我们发现,这是一个等差数列,而等差序列求和,有n*(n+1)/2个子串(不包括空)。
(这里有一个思想需要注意,遇到等差数列求和,基本都是o(n^2)级别的)
好,我们来分析一下暴力枚举的时间复杂度,上文已经提到过,一个字符串的所有子串,数量是o(n^2)级别,所以光是枚举出所有情况时间就是o(n^2),每一种情况,你要判断他是不是回文的话,还需要o(n),情况数和每种情况的时间,应该乘起来,也就是说,枚举时间要o(n^3),效率太低。
思路:我们知道,回文全是对称的,每个回文串都会有自己的对称轴,而两边都对称。我们如果从对称轴开始, 向两边阔,如果总相等,就是回文,扩到两边不相等的时候,以这个对称轴向两边扩的最长回文串就找到了。
举例:1 2 1 2 1 2 1 1 1
我们用每一个元素作为对称轴,向两边扩
0位置,左边没东西,只有自己;
1位置,判断左边右边是否相等,1=1所以接着扩,然后左边没了,所以以1位置为对称轴的最长回文长度就是3;
2位置,左右都是2,相等,继续,左右都是1,继续,左边没了,所以最长为5
3位置,左右开始扩,1=1,2=2,1=1,左边没了,所以长度是7
如此把每个对称轴扩一遍,最长的就是答案,对么?
你要是点头了。。。自己扇自己两下。
还有偶回文呢,,比如1221,123321.这是什么情况呢?这个对称轴不是一个具体的数,因为人家是偶回文。
我们可以在元素间加上一些符号,比如/1/2/1/2/1/2/1/1/1/,这样我们再以每个元素为对称轴扩就没问题了,每个你加进去的符号都是一个可能的偶数回文对称轴,此题可解。。。因为我们没有错过任何一个可能的对称轴,不管是奇数回文还是偶数回文。
其实不需要的,大家想一下,不管怎么扩,原来的永远和原来的比较,加进去的永远和加进去的比较。(不举例子说明了,自己思考一下)
好,分析一波时间效率吧,对称轴数量为o(n)级别,每个对称轴向两边能扩多少?最多也就o(n)级别,一共长度才n; 所以n*n是o(n^2) (最大能扩的位置其实也是两个等差数列,这么理解也是o(n^2),用到刚讲的知识)
这种方法把原来的暴力枚举o(n^3)变成了o(n^2),大家想一想为什么这样更快呢?
我在kmp一文中就提到过,我们写出暴力枚举方法后应想一想自己做出了哪些重复计算,错过了哪些信息,然后进行优化。
看我们的暴力方法,如果按一般的顺序枚举,012345,012判断完,接着判断0123,我是没想到可以利用前面信息的方法,因为对称轴不一样啊,右边加了一个元素,左边没加。所以刚开始,老是想找一种方法,左右都加一个元素,这样就可以对上一次的信息加以利用了。
暴力为什么效率低?永远是因为重复计算,举个例子:12121211,下标从0开始,判断1212121是否为回文串的时候,其实21212和121等串也就判断出来了,但是我们并没有记下结果,当枚举到21212或者121时,我们依旧是重新尝试了一遍。(假设主串长度为n,对称轴越在中间,长度越小的子串,被重复尝试的越多。中间那些点甚至重复了n次左右,本来一次搞定的事)
还是这个例子,我换一个角度叙述一下,比较直观,如果从3号开始向两边扩,121,21212,最后扩到1212121,时间复杂度o(n),用枚举的方法要多少时间?如果主串长度为n,枚举尝试的子串长度为,3,5,7....n,等差数列,大家读到这里应该都知道了,等差数列求和,o(n^2)。
首先告诉大家,这个算法时间可以做到o(n),空间o(n).
好的,开始讲解这个神奇的算法。
首先明白两个概念:
最右回文边界R:挺好理解,就是目前发现的回文串能延伸到的最右端的位置(一个变量解决)
中心c:第一个取得最右回文边界的那个中心对称轴;举个例子:12121,二号元素可以扩到12121,三号元素 可以扩到121,右边界一样,我们的中心是二号元素,因为它第一个到达最右边界
当然,我们还需要一个数组p来记录每一个可能的对称轴最后扩到了哪里。
有了这么几个东西,我们就可以开始这个神奇的算法了。
为了容易理解,我分了四种情况,依次讲解:
1)i>R:也就是说,i以及i右边,我们根本不知道是什么,因为从来没扩到那里。那没有任何优化,直接往右暴力 扩呗。
(下面我们做i关于c的对称点,i’)
2)i
三种情况:
i’的回文左边界在c回文左边界的里面
i’回文左边界在整体回文的外面
i’左边界和c左边界是一个元素
(怕你忘了概念,c是对称中心,c它当初扩到了R,R是目前扩到的最右的地方,现在咱们想以i为中心,看能扩到哪里。)
按原来o(n^2)的方法,直接向两边暴力扩。好的,魔性的优化来了。咱们为了好理解,分情况说。首先,大家应该知道的是,i’其实有人家自己的回文长度,我们用数组p记录了每个位置的情况,所以我们可以知道以i’为中心的回文串有多长。
我用这两个括号括起来的就是这两个点向两边扩到的位置,也就是i和i’的回文串,为什么敢确定i回文只有这么长?和i’一样?我们看c,其实这个图整体是一个回文串啊。
串内完全对称(1是括号左边相邻的元素,2是右括号右边相邻的元素,34同理),
由此得出结论1:
由整体回文可知,点2=点3,点1=点4
当初i’为什么没有继续扩下去?因为点1!=点2。
由此得出结论2:点1!=点2
因为前面两个结论,所以3!=4,所以i也就到这里就扩不动了。而34中间肯定是回文,因为整体回文,和12中间对称。
这时,我们也可以直接确定i能扩到哪里,请听分析:
当初c的大回文,扩到R为什么就停了?因为点2!=点4----------结论1;
2’为2关于i’的对称点,当初i’左右为什么能继续扩呢?说明点2=点2’---------结论2;
由c回文可知2’=3,由结论2可知点2=点2’,所以2=3;
但是由结论一可知,点2!=点4,所以推出3!=4,所以i扩到34为止了,34不等。
而34中间那一部分,因为c回文,和i’在内部的部分一样,是回文,所以34中间部分是回文。
点1!=点2,点2=点3,就只能推出这些,只知道34中间肯定是回文,外边的呢?不知道啊,因为不知道3和4相不相等,所以我们得出结论:点3点4内肯定是,继续暴力扩。
原理及操作叙述完毕,不知道我讲没讲明白。。。
看代码大家是不是觉得不像o(n)?其实确实是的,来分析一波。。
首先,我们的i依次往下遍历,而R(最右边界)从来没有回退过吧?其实当我们的R到了最右边,就可以结束了。再不济i自己也能把R一个一个怼到最右
我们看情况一和四,R都是以此判断就向右一个,移动一次需要o(1)
我们看情况二和三,直接确定了p[i],根本不用扩,直接遍历下一个元素去了,每个元素o(1).
综上,由于i依次向右走,而R也没有回退过,最差也就是i和R都到了最右边,而让它们移动一次的代价都是o(1)的,所以总体o(n)
可能大家看代码依旧有点懵,其实就是code整合了一下,我们对于情况23,虽然知道了它肯定扩不动,但是我们还是给它一个起码是回文的范围,反正它扩一下就没扩动,不影响时间效率的。而情况四也一样,给它一个起码是回文,不用验证的区域,然后接着扩,四和二三的区别就是。二三我们已经心中有B树,它肯定扩不动了,而四确实需要接着尝试。
(要是写四种情况当然也可以。。但是我懒的写,太多了。便于理解分了四种情况解释,code整合后就是这样子)
字数3411
范天祚
2017/12/22