本周的作业较少,只有一个编程任务hw2.作业比较简单,如果大学学习过矩阵代数的话,基本上没有什么问题,不过要注意的一点是基2的Span的求法。
基2空间上,在所有基向量中取任意个数个,叠加组合就得到了Span。但是如何取任意个呢?下面给出几种方法。
一种方法是对于任意可能的个数,利用Python中的排列组合module生成对应于此个数的所有排列,即得到Span。感兴趣的话可以百度一下。这种方法概念较为清晰,但需要对Python的库较为了解。
第二种方法,利用了从n个元素中任选任意个的方法只有2^n个的排列组合知识。具体来说,就是对于任意从0到2^n-1的整数,使用bin()函数得到其二进制表示,对应位为1即代表选中此基向量。这种方法稍微Smart一些。但过程较为冗杂。
第三种,就是下面程序给出的方法,一行语句就可以完成运算,原理和上一种方法相同,就不再赘述。但要注意结果为0的情况下要单独考虑。
其他的向量运算都比较简单,最后几道判断是否为向量空间的问题,只需要牢记向量空间三特征(包含0,加减和向量乘法组合仍在空间内)就不会出错。
作业代码如下,模版中注释部分给出了验证范例。
# version code 761
# Please fill out this stencil and submit using the provided submission script.
from vec import Vec
from GF2 import one
## Problem 1
def vec_select(veclist, k):
'''
>>> D = {'a','b','c'}
>>> v1 = Vec(D, {'a': 1})
>>> v2 = Vec(D, {'a': 0, 'b': 1})
>>> v3 = Vec(D, { 'b': 2})
>>> v4 = Vec(D, {'a': 10, 'b': 10})
>>> vec_select([v1, v2, v3, v4], 'a') == [Vec(D,{'b': 1}), Vec(D,{'b': 2})]
True
'''
return [x for x in veclist if x[k]==0]
def vec_sum(veclist, D):
'''
>>> D = {'a','b','c'}
>>> v1 = Vec(D, {'a': 1})
>>> v2 = Vec(D, {'a': 0, 'b': 1})
>>> v3 = Vec(D, { 'b': 2})
>>> v4 = Vec(D, {'a': 10, 'b': 10})
>>> vec_sum([v1, v2, v3, v4], D) == Vec(D, {'b': 13, 'a': 11})
True
'''
return sum(veclist) if len(veclist)!=0 else Vec(D,{})
def vec_select_sum(veclist, k, D):
'''
>>> D = {'a','b','c'}
>>> v1 = Vec(D, {'a': 1})
>>> v2 = Vec(D, {'a': 0, 'b': 1})
>>> v3 = Vec(D, { 'b': 2})
>>> v4 = Vec(D, {'a': 10, 'b': 10})
>>> vec_select_sum([v1, v2, v3, v4], 'a', D) == Vec(D, {'b': 3})
True
'''
return vec_sum(vec_select(veclist,k),D)
## Problem 2
def scale_vecs(vecdict):
'''
>>> v1 = Vec({1,2,3}, {2: 9})
>>> v2 = Vec({1,2,4}, {1: 1, 2: 2, 4: 8})
>>> scale_vecs({3: v1, 5: v2}) == [Vec({1,2,3},{2: 3.0}), Vec({1,2,4},{1: 0.2, 2: 0.4, 4: 1.6})]
True
'''
return [y/x for (x,y) in vecdict.items()]
## Problem 3
def GF2_span(D, L):
'''
>>> from GF2 import one
>>> D = {'a', 'b', 'c'}
>>> L = [Vec(D, {'a': one, 'c': one}), Vec(D, {'b': one})]
>>> len(GF2_span(D, L))
4
>>> Vec(D, {}) in GF2_span(D, L)
True
>>> Vec(D, {'b': one}) in GF2_span(D, L)
True
>>> Vec(D, {'a':one, 'c':one}) in GF2_span(D, L)
True
>>> Vec(D, {x:one for x in D}) in GF2_span(D, L)
True
'''
if len(L)==0:return []
maxind=2**len(L)-1
res=[sum([L[j] for j in range(len(L)) if i//(2**j)%2]) for i in range(maxind+1)]
res.append(Vec(D,{}))
del res[0]
return res
## Problem 4
# Answer with a boolean, please.
is_it_a_vector_space_1 = True
is_it_a_vector_space_2 = False
## Problem 5
is_it_a_vector_space_3 = True
is_it_a_vector_space_4 = False
## Problem 6
is_it_a_vector_space_5 = True
is_it_a_vector_space_6 = False