- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
知识鱼丸
machinelearning逻辑回归算法机器学习
1.数据准备首先,我们需要一些示例数据。在这个例子中,我们将生成一些简单的二维数据点,并为其分配标签。2.定义逻辑回归模型接下来,我们定义一个简单的逻辑回归模型。3.训练模型定义损失函数和优化器,然后进行模型训练。4.保存模型训练完成后,我们可以保存模型的状态字典。5.加载模型并进行预测加载保存的模型,并进行预测。importtorchimporttorch.nnasnnimporttorch.o
- 使用numpy自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预
辞落山
numpytensorflow逻辑回归
1.引言逻辑回归(LogisticRegression)是一种常见的分类算法,广泛应用于二分类问题。在本篇博客中,我们将使用numpy生成一个简单的自定义数据集,并使用TensorFlow框架构建和训练逻辑回归模型。训练完成后,我们会保存模型,并演示如何加载保存的模型进行预测。2.创建自定义数据集首先,我们使用numpy生成一个简单的二分类数据集,包含两个特征和对应的标签。标签0表示负类,标签1表
- 梯度提升用于高效的分类与回归
纠结哥_Shrek
分类回归数据挖掘
使用决策树(DecisionTree)实现梯度提升(GradientBoosting)主要是模拟GBDT(GradientBoostingDecisionTrees)的原理,即:第一棵树拟合原始数据计算残差(负梯度方向)用新的树去拟合残差累加所有树的预测值重复步骤2-4,直至达到指定轮数下面是一个纯Python+PyTorch实现GBDT(梯度提升决策树)的代码示例。1.纯Python实现梯度提升
- 我把DeepSeek-R1推理能力知识蒸馏到Qwen2,效果真的炸裂!!!
AI生成曾小健
自然语言处理人工智能
我把DeepSeek-R1推理能力知识蒸馏到Qwen2,效果真的炸裂!!!关于NLP那些你不知道的事2025年01月29日13:08我把DeepSeek-R1推理能力知识蒸馏到Qwen2,效果真的炸裂!!!一、什么是知识蒸馏?知识蒸馏是一种模型压缩技术,用于将大型复杂模型(教师模型)的知识迁移到小型模型(学生模型)。其核心原理是教师模型通过预测结果(如概率分布或推理过程)向学生模型传授知识,学生模
- 深度学习过程是什么
小松要进步
李哥深度学习深度学习
问:深度学习是:一组原始数据,经过线性变换、非线性变换、偏差加和等操作后得到一组预测数据,再根据损失函数计算预测数据和原始数据的差值,用差值数据对权重和偏差求偏导,这里的偏导数的值也就是使得损失减小的最佳方向,然后根据偏导数的方向和步长更新权重和偏差,对吗答:您的描述大致正确,但有一些细节需要澄清和修正,以更准确地反映深度学习中模型训练的过程。以下是详细的解释:1.原始数据处理:一组原始数据首先通
- 灰色预测模型_预测模型——灰色模型
weixin_39548740
灰色预测模型
网上有许多大佬写的灰色预测模型,写的非常的棒,但是我个人感觉,在公式部分,许多大佬在写最小二乘法得出a,b的值的时候并不是那么细致,所以我写这一篇灰色模型既是详细介绍公式的由来,同时也是为后续我要写的组合模型,如灰色模型与神经网络的结合,灰色模型与马尔可夫链式模型的结合做一个铺垫,希望对大家有帮助。1,灰色系统介绍灰色系统是由华中科技大学的邓聚龙教授于80年代初创立,该系统作为新兴的横断学科,在短
- 赛博算卦之周易六十四卦JAVA实现:六幺算尽天下事,梅花化解天下苦。
钮钴禄·爱因斯晨
java学习java
佬们过年好呀~新年第一篇博客让我们来场赛博算命吧!更多文章:个人主页系列文章:JAVA专栏欢迎各位大佬来访哦~互三必回!!!文章目录#一、文化背景概述1.文化起源2.起卦步骤#二、卦象解读#三、justdoit!代码展示1.解析2.代码实现#四、总结#参考文献#一、文化背景概述1.文化起源六爻和六十四卦的文化起源可追溯至远古,那时人们为预测未来开展占卜,从龟甲兽骨裂纹到蓍草竹签筮法,逐步孕育了爻的
- 9. 马科维茨资产组合模型+FF5+GARCH风险模型优化方案(理论+Python实战)
AI量金术师
金融资产组合模型进化论python开发语言金融人工智能机器学习算法
目录0.承前1.核心风险函数代码讲解1.1数据准备和初始化1.2单资产GARCH建模1.3模型拟合和波动率预测1.4异常处理机制1.5相关系数矩阵计算1.6构建波动率矩阵1.7计算协方差矩阵1.8确保矩阵对称性1.9确保矩阵半正定性1.10格式转换和返回1.11calculate_covariance_matrix函数汇总2.代码汇总3.反思3.1不足之处3.2提升思路4.启后0.承前本篇博文是对
- Cursor AI
Anjgst
人工智能
CursorAI完整指南:AI驱动的新一代编程工具目录简介主要特性安装与设置核心功能详解使用技巧价格方案常见问题简介CursorAI是一个基于VSCode的革命性AI驱动代码编辑器,它将人工智能与传统编程环境完美结合,为开发者提供更智能、更高效的编程体验。主要特性1.AI智能补全Tab智能补全:通过AI预测并补全多行代码上下文感知:理解整个项目结构和编码风格多语言支持:支持所有主流编程语言2.代码
- 使用Flink进行流式图处理
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
使用Flink进行流式图处理1.背景介绍1.1大数据时代的到来随着互联网、物联网和移动互联网的快速发展,数据呈现出爆炸式增长。根据IDC的预测,到2025年,全球数据量将达到175ZB。传统的批处理系统已经无法满足对实时数据处理的需求。因此,流式计算应运而生,成为大数据处理的重要组成部分。1.2流式计算的概念流式计算是一种新兴的数据处理范式,它能够持续不断地处理来自各种数据源的数据流。与传统的批处
- 云原生架构的核心原则:微服务、容器与DevOps
zhousenshan
论文素材云原生架构微服务
云原生架构正以前所未有的速度席卷各行各业,成为众多企业迈向高效、敏捷与创新之路的关键力量。据Gartner预测,到2025年,将有95%的新建数字工作负载基于云原生平台,这一数据直观地反映出云原生架构在未来企业技术布局中的核心地位。云原生架构之所以备受瞩目,源于它能充分释放云计算的潜能,为企业带来诸多显著优势。它打破了传统架构的诸多束缚,让应用开发、部署与运维变得更加灵活、高效,极大提升了企业应对
- 关于时间序列预测的一份介绍
张焚雪
人工智能算法大数据
时间序列预测是一种基于过去数据点的分析方法,用于预测未来值。它广泛应用于经济学、金融、气象学、销售预测、库存管理等领域。在这篇文章中,我就将介绍有关时间序列预测有关的东西,具体将包含其有关的概念、预测过程以及相关模型简介。一、概念1.1预测模型所谓预测模型就是用基于历史数据预测未来值的各种数学和统计模型,它是时间序列预测的核心,选择合适的预测模型直接影响到预测结果的准确性。一般我们考虑根据频率与趋
- 基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
宇哥预测优化代码学习
神经网络cnngru
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、引言二、模型结构三、数据预处理四、模型训练与评估五、实验结果与分析六、结论与展望2运行结果3参考文献4Python代码实现及数据1概述基于CNN-GRU(convolutionalneuralnetworks-gaterecurrentunit)神经网络的电
- 使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测。
Jam-Young
scikit-learnpython信息可视化
使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测。#导入鸢尾花数据集fromsklearn.datasetsimportload_iris,fetch_20newsgroups#数据化可视包importseabornassnsimportmatplotlib.pyplotaspltimportpandasaspdfromsklearn.model_selectio
- MRP计划过程综述、MRP需求传递、净需求计算、MRP的时间逻辑等
saplakes
#SAP_PPSAPPPMRP物料需求计划生产计划
文章目录MRP计划过程综述MRP的运行方式分为几类MRP需求传递净需求的计算MRP时间推算原理MRP时间逻辑-排产MRP清单【SAP系统PP模块研究】本文对MRP运行过程中的一些基本概念,以尽量简洁平实的方式进行讲解,以增进对MRP概念的理解。MRP计划过程综述SAPMRP物料需求计划的前提是有需求,对于上层的成品,主要体现为销售订单、销售合同、销售计划协议等,另外一块就是计划独立需求,也就是预测
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- AI技术赋能电商行业,引领变革
m0_74136676
人工智能
AI大模型在电商行业的应用正在不断拓展,其强大的数据处理和分析能力为电商平台带来了前所未有的创新机遇。一、购物推荐的创新应用AI大模型通过分析用户的浏览历史、购买记录、搜索关键词等大量数据,能够生成个性化的商品推荐。这种推荐系统比传统的基于规则或简单协同过滤的推荐更为精准。它利用深度学习技术,更准确地预测用户的兴趣点,使推荐内容更加贴切,从而提高用户点击率和购买转化率。例如,当用户在电商平台上搜索
- 网络安全-网络安全及其防护措施11
Jr_l
网络安全安全网络安全网络
51.网络容量规划网络容量规划的概念和重要性网络容量规划:是指根据业务需求和预期增长,合理规划和设计网络的带宽、设备和资源,以满足未来网络流量和服务质量的需求。通过有效的网络容量规划,确保网络性能稳定和用户体验良好,避免资源浪费和网络瓶颈。网络容量规划的关键因素业务需求预测:分析和预测业务增长趋势及数据流量变化,确定未来网络容量需求。带宽规划:根据业务需求和网络拓扑设计,规划合适的带宽和连接,确保
- 【计算机视觉】目标跟踪应用
油泼辣子多加
计算机视觉计算机视觉目标跟踪人工智能
一、简介目标跟踪是指根据目标物体在视频当前帧图像中的位置,估计其在下一帧图像中的位置。视频帧由t到t+1的检测,虽然也可以使用目标检测获取,但实际应用中往往是不可行的,原因如下:目标跟踪的目的是根据目标在当前视频帧图像中的位置,预测其在下一帧图像中的位置。然而,使用目标检测直接获取目标位置的方式在实际应用中存在一些限制,主要原因如下:1.实时性问题频繁检测开销大:目标检测通常需要对每一帧的整个图像
- Deepseek爆火背后的多Token技术预测
明哲AI
AIGC人工智能大模型RAG多token预测deepseek
近年来,大语言模型(LLMs)的发展如火如荼,它们在聊天机器人、文档生成、代码编写等领域大放异彩。然而,随着模型规模的增加,生成效率也成为了一大瓶颈。传统的自回归语言模型需要逐字生成(token-by-token),这种方式不仅耗时,还限制了模型在实时场景中的表现。那么,有没有一种方法可以加快生成速度,同时保持文本质量?答案是:多Token预测(Multi-TokenPrediction,MTP)
- 均方误差(MSE)揭秘:预测模型的“真面目”
星际编程喵
Python探索之旅pythondjangoflask算法数学建模
前言在这个充满数据的世界里,我们需要各种方式来衡量一个模型的表现,尤其在回归问题中,均方误差(MSE)是我们非常常见的“好朋友”。它就像一位忠诚的侦探,默默为我们揭示预测值与实际值之间的真相。今天,让我们一起进入均方误差的世界,看看它是如何用简单却有效的方式,帮助我们准确评估模型的预测能力。简介均方误差(MSE,MeanSquaredError)是衡量预测值与实际值之间差异的常见指标。在回归问题中
- AI时代的人类增强:道德考虑与身体增强的未来发展策略分析预测
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
人类增强、AI、道德、身体增强、未来发展策略、预测1.背景介绍人类文明自诞生以来,就一直在探索如何超越自身的局限性。从使用工具到发明火,从农业文明到工业革命,每一次进步都代表着人类对自身能力的提升。如今,人工智能(AI)的快速发展,为人类提供了前所未有的机会,让我们迈向一个全新的时代——AI时代的人类增强时代。AI时代的人类增强,是指通过人工智能技术,提升人类的认知能力、身体能力和生活质量。这不仅
- 深入解析:使用 Python 爬取二手车交易平台数据的全流程
Python爬虫项目
2025年爬虫实战项目python开发语言百度爬虫信息可视化
二手车交易平台提供了丰富的汽车交易数据,这些数据包含了车辆品牌、型号、价格、行驶里程、上牌时间等关键信息。这些数据对市场研究、价格预测、车辆性能分析等应用场景具有重要价值。本篇博客将带你深入学习如何用Python爬取二手车交易平台数据,提供详细的实现代码、突破反爬机制的技巧,以及数据清洗和分析的思路。一、二手车数据的价值与分析场景1.1数据价值二手车交易数据可以应用在以下场景:市场分析:了解当前二
- Baklib揭示内容中台与人工智能技术的创新协同效应
清风徐徐de来
其他
内容概要在当今信息爆炸的时代,内容的高效生产与分发已成为各行业竞争的关键。内容中台与人工智能技术的结合,为企业提供了一种新颖的解决方案,使得内容创造的流程更加智能化和高效化。内容中台作为信息流动的核心,能够集中管理和分发多元化的内容资源,为各类用户需求提供服务。同时,人工智能技术则在数据分析、用户行为预测、个性化推荐等方面展现出强大的能力。两者相辅相成,推动了在内容生产过程中的创新与发展。以下表格
- 机器学习:利用sklearn实现心脏病预测
薄化克Oswald
机器学习:利用sklearn实现心脏病预测机器学习sklearn实现心脏病预测项目地址:https://gitcode.com/Resource-Bundle-Collection/171ff欢迎使用本资源仓库,本项目专注于利用Python的sklearn库进行心脏病预测的机器学习实践。通过详尽的步骤和示例代码,本项目为你展示了如何应用不同的机器学习算法来分析心脏病数据集,并预测患者是否有可能患有
- python3调用arcpy地理加权回归_分析地理加权回归分析结果的操作方法
weixin_39545269
1从地理加权回归(GWR)工具生成的输出包括以下内容:输出要素类可选系数栅格表面整体模型结果的消息窗口报告显示模型变量和诊断结果的辅助表预测输出要素类2下文中将使用一系列运行GWR和解释GWR结果的步骤对以上每项输出进行说明。通常将以普通最小二乘法(OLS)开始回归分析。有关详细信息,请参阅回归分析基础知识和解释OLS回归结果。回归分析的一种常用方法是在移动到GWR之前识别可能的最佳OLS模型。此
- 数据挖掘常用算法模型简介
大乔乔布斯
数据挖掘线性回归决策树
以下是数据挖掘中常用的算法模型及其简称、英文全称和使用场景的简要介绍:1.决策树(DecisionTree,DT)常用算法:CART:ClassificationandRegressionTreeID3:IterativeDichotomiser3C4.5:基于ID3改进使用场景:分类问题(如信用风险评估、客户分类)回归问题(如预测房价)特点:易解释、适合处理非线性数据。2.随机森林(Random
- Tensorflow入门——训练结果的保存与加载
weixin_34087301
人工智能python数据库
2019独角兽企业重金招聘Python工程师标准>>>训练完成以后我们就可以直接使用训练好的模板进行预测了但是每次在预测之前都要进行训练,不是一个常规操作,毕竟有些复杂的模型需要训练好几天甚至更久所以将训练好的模型进行保存,当有需要的时候重新加载这个模型进行预测或者继续训练,这才是一个常规操作我们依然使用最简单的例子进行说明,这里沿用Tensorflow入门——实现最简单的线性回归模型的预测这个例
- Depth Anything V2:单目深度估计的更强基线
武朵欢Nerissa
DepthAnythingV2:单目深度估计的更强基线项目地址:https://gitcode.com/gh_mirrors/de/Depth-Anything-V2项目介绍DepthAnythingV2是由HKU与TikTok团队合作开发的单目深度估计算法的升级版本。这个框架显著提升了细节处理能力和鲁棒性,相比于基于深度学习的方法,它提供了更快的推理速度、更少的参数量以及更高的深度预测精度。本项
- 创新药周报及靶点研发分析报告
魔都财观
本文还有配套的精品资源,点击获取简介:本报告深入探讨医药行业,提供最新创新药物研发动态,并分析全球和国内的医药趋势。报告关注靶点研发的关键性,详细介绍特定靶点如肿瘤抑制因子等的生物学功能和作为药物靶点的潜力,同时深入临床试验阶段的新药项目,讨论新药审批流程和政策环境。报告还涵盖行业投资和合作动态,预测未来市场趋势,为投资者和决策者提供宝贵的行业洞见。1.医药行业研发动态分析1.1行业背景概述医药行
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的