LR与SVM的联系与区别

解析一:LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题)

区别:

1、LR是参数模型,svm是非参数模型,linear和rbf则是针对数据线性可分和不可分的区别;
2、从目标函数来看,区别在于逻辑回归采用的是logistical loss,SVM采用的是hinge loss,这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。

3、SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器。而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重。
4、逻辑回归相对来说模型更简单,好理解,特别是大规模线性分类时比较方便。而SVM的理解和优化相对来说复杂一些,SVM转化为对偶问题后,分类只需要计算与少数几个支持向量的距离,这个在进行复杂核函数计算时优势很明显,能够大大简化模型和计算。

5、logic 能做的 svm能做,但可能在准确率上有问题,svm能做的logic有的做不了。
6、SVM 基于距离分类,LR 基于概率分类。 SVM依赖数据表达的距离测度,所以需要对数据先做 normalization;LR不受其影响。
7、在解决非线性问题时,支持向量机采用核函数的机制,而LR通常不采用核函数的方法。
SVM算法里,只有少数几个代表支持向量的样本参与分类决策计算,也就是只有少数几个样本需要参与核函数的计算。
LR算法里,每个样本点都必须参与分类决策的计算过程,也就是说,假设我们在LR里也运用核函数的原理,那么每个样本点都必须参与核计算,这带来的计算复杂度是相当高的。尤其是数据量很大时,我们无法承受。所以,在具体应用时,LR很少运用核函数机制。
8、SVM的损失函数就自带正则,而 LR 必须另外在损失函数之外添加正则项。

相同点

①都是线性分类器。本质上都是求一个最佳分类超平面。
②都是监督学习算法。
③都是判别模型。判别模型不关心数据是怎么生成的,它只关心信号之间的差别,然后用差别来简单对给定的一个信号进行分类。常见的判别模型有:KNN、SVM、LR,常见的生成模型有:朴素贝叶斯,隐马尔可夫模型。

补充:参数模型和非参数模型
在统计学中,参数模型通常假设总体(随机变量)服从某一个分布,该分布由一些参数确定(比如正太分布由均值和方差确定),在此基础上构建的模型称为参数模型;非参数模型对于总体的分布不做任何假设,只是知道总体是一个随机变量,其分布是存在的(分布中也可能存在参数),但是无法知道其分布的形式,更不知道分布的相关参数,只有在给定一些样本的条件下,能够依据非参数统计的方法进行推断。

从上述的区别中可以看出,问题中有没有参数,并不是参数模型和非参数模型的区别。其区别主要在于总体的分布形式是否已知。而为何强调“参数”与“非参数”,主要原因在于参数模型的分布可以有参数直接确定

你可能感兴趣的:(机器学习面试题)