- SL导轨通常指的是“直线导轨”(Linear Guide),也称为线性滑轨或直线轴承
getapi
数据库云计算
SL导轨通常指的是“直线导轨”(LinearGuide),也称为线性滑轨或直线轴承。它是一种机械传动元件,广泛应用于需要高精度直线运动的机械设备中。SL导轨的主要功能是为运动部件提供平稳、精确的直线导向,同时承受一定的负载。以下是关于SL导轨的一些关键信息:1.SL导轨的基本结构SL导轨通常由以下几个主要部分组成:导轨(Rail):安装在固定部件上,作为滑块的运动轨道。滑块(Block/Carri
- 第十二届蓝桥杯C++青少年组中/高级组省赛2021年真题解析
码农StayUp
C++蓝桥杯青少年组真题解析蓝桥杯c++算法
一、单选题第1题下列符号中哪个在C++中表示行注释()。A:!B:#C:]D://答案:D在C++中,行注释的表示方式是使用双斜杠//。行注释是指从双斜杠开始直到该行的末尾,所有内容都会被编译器忽略,不会被编译和执行。第2题每个C++程序都必须有且仅有一个()A:函数B:预处理命令C:主函数D:语句答案:C每个C++程序都必须有且仅有一个主函数。第3题下列字特串中不可以用作C++变量名称的是()A
- Milvus 中常见相似度度量方法
Sirius Wu
milvus机器学习算法
在Milvus中,相似度度量方法用于衡量向量之间的相似程度,不同的度量方法有不同的特点、优缺点和适用场景。以下是对Milvus中常见相似度度量方法的详细介绍以及对应的search参数示例。1.欧氏距离(L2Distance,L2)特点欧氏距离是最常用的距离度量方法之一,它计算的是两个向量在欧几里得空间中的直线距离。对于两个nnn维向量x⃗=(x1,x2,⋯ ,xn)\vec{x}=(x_1,x_2
- 第二十二章: 静态多态与动态多态的衔接_《C++ Templates》notes
郭涤生
c/c++c++开发语言笔记
静态多态与动态多态的衔接核心知识点代码示例与测试用例测试用例输出多选题设计题关键技术总结核心知识点静态多态vs动态多态静态多态:编译期多态,通过模板实现,代码生成效率高,但灵活性差。动态多态:运行期多态,通过虚函数实现,灵活性高,但存在虚表开销。类型擦除(TypeErasure)核心思想:将不同类型的对象统一为通用接口,隐藏具体类型信息。实现方式:通常结合基类指针和模板注册机制。桥接模式(Brid
- 穴位按摩培训系统Django-SpringBoot-php-Node.js-flask
QQ188083800
djangospringbootphp
目录具体实现截图技术栈介绍系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示具体实现截图技术栈介绍本课题的研究方法和研究步骤基本合理,难度适中,本选题是学生所学专业知识的延续,符合学生专业发展方向,对于提高学生的基本知识和技能以及钻研能力有益。该学生能够在预定时间内完成该课题的设计。研究的选题立意明确,结构合理,研究内容充实,研究方法准确有
- 【论文阅读】Persistent Homology Captures the Generalization of Neural Networks Without A Validation Set
开心星人
论文阅读论文阅读
将神经网络表征为加权的无环图,直接根据模型的权重矩阵构造PD。计算相邻batch的权重矩阵PD之间的距离。比较同调收敛性与神经网络的验证精度变化趋势摘要机器学习从业者通常通过监控模型的某些指标来估计其泛化误差,并在训练数值收敛之前停止训练,以防止过拟合。通常,这种误差度量或任务相关的指标是通过一个验证集(holdoutset)来计算的。因为这些数据没有直接用于更新模型参数,通常假设模型在验证集上的
- 【分治法】最接近点对问题 C++(附代码分析及实例)
haaaaaaarry
算法设计与分析算法
问题描述给定平面上n个点,找其中的一对点,使得在n个点组成的所有点对中,该点对间的距离最小问题分析先考虑一下一维情况下,取中间某个点m,将所有点划分为两个集合,递归的找出左右集合的最接近点对,最后再和最靠近点m的左右两点间的距离作比较,最小的就是整个点对中最接近的现在将一维的情况扩展到二维,二维比一维复杂的地方在于每个点都有两个坐标,我们用一条直线l将平面上的所有点同样分成两个集合,再递归的去两个
- QHDBO基于量子计算和多策略融合的蜣螂优化算法
算法小狂人
算法改进智能优化算法量子计算算法
2.DBO基本的蜣螂算法通过模拟蜣螂在自然界中的四种行为(滚动、产卵、觅食和偷窃)来执行种群位置更新。2.1滚动蜣螂在自然界中,蜣螂必须通过太阳导航,使其球滚动的路线尽可能直线。方程(1)用于原始论文中更新滚动蜣螂的位置:xi(t+1)=xi(t)+α⋅k⋅xi(t−1)+b⋅Δx(1)x_i(t+1)=x_i(t)+\alpha\cdotk\cdotx_i(t-1)+b\cdot\Deltax\
- Linux——Linux系统编程之基于TFTP实现服务器与开发板间的文件传输实战总结
Winter_world
Linux系统TFTP服务器搭建TFTP文件传输
目录0引言1TFTP服务器搭建1.1TFTP基础1.2Ubuntu搭建TFTP服务器1.3测试TFTP服务器2开发板实现TFTP文件传输2.1同一网段2.2配置2.3客户端与服务器的通信0引言我们前面总结的Linux字符设备、串口编程博文中,在虚拟机中编译得到可执行文件后,都是通过U盘连接开发板进行测试验证的,或者就是把可执行文件编译到最小系统中,再OTG烧写进开发板,这两种方法都比较麻烦,这里我
- LabVIEW实现LoRa通信
不脱发的程序猿
LabVIEW物联网开发实战labview
目录1、LoRa通信原理2、硬件环境部署3、程序架构4、前面板设计5、程序框图设计6、测试验证本专栏以LabVIEW为开发平台,讲解物联网通信组网原理与开发方法,覆盖RS232、TCP、MQTT、蓝牙、Wi-Fi、NB-IoT等协议。结合实际案例,展示如何利用LabVIEW和常用模块实现物联网系统的快速开发与原型设计,助你从基础到实战,全面掌握物联网开发技能。开源免费LabVIEW学习专栏分享:L
- 【零基础入门】一篇弄懂nn.Sequential以及ModuleList的使用(呕心沥血版)
十二月的猫
PyTorch深度学习pytorch零基础入门
个人主页:十二月的猫-CSDN博客系列专栏:《PyTorch科研加速指南:即插即用式模块开发》CSDN博客十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光目录1.前言2.Sequential类的使用2.1序列容器简单注入2.2序列容器字典注入2.3序列容器函数注入2.4序列容器修改2.5序列容器删除3.nn.ModuleList()的使用3.1定义模型3.2使用模型4.总结1.前言《
- 数据库原理实验报告:Powerdesigner建模E-R模型并转换表
不吃~香菜
各类实验报告汇总需要私数据库实验报告PowerdesignerE-R模型建模
注:此实验并不完整,仅供参考,如需完整版请私我留言一、实验目的:二、实验工具:三、实验要求:四、实验过程:图文并茂,每一步都包含详细图片,总共11页word!往期回顾:计算机接口实验报告:8254定时/计数器应用实验-CSDN博客计算机接口实验报告:D/A转换实验-CSDN博客计算机接口实验报告:LED显示实验-CSDN博客数据库原理实验报告:Powerdesigner建模E-R模型并转换表一、实
- 计算机接口实验报告:D/A转换实验
不吃~香菜
各类实验报告汇总需要私计算机接口实验报告D/A转换实验
注:此实验并不完整,仅供参考,如需完整版请私我留言完整版包含:1、实验原理2、实验内容3、实验代码4、实验截图5、实验心得图文并茂,包含内部引脚图、线路图等,非常详细!总共10+页word!往期回顾:计算机接口实验报告:8255并行接口实验-CSDN博客计算机接口实验报告:8254定时/计数器应用实验-CSDN博客计算机接口实验报告:D/A转换实验一、实验内容编写D/A转换程序,要求产生锯齿波、脉
- 使用ssh-keygen命令生成密钥对无密码远程登陆linux主机
哎哟喂我去
rhel6
我们在工作或试验中经常会需要登录多台linux主机进行操作,开启过多的ssh登陆界面,在不同的主机间切换时是非常让人的抓狂一件事情,只登陆一台linux主机然后通过此主机ssh登陆到其他主机这样是比较好的一种方式,但是在ssh登陆到其他主机时频繁的输入密码会让我们一直做重复的输入密码的工作,那有没有可以自动记住密码,或者不需要输入密码的工具呢?linux自带的ssh-kengen命令可以让我们轻松
- 二十二.基于国民MCU 的COMP模块的比较案例
悟空胆好小
国民MCUmcu单片机stm32
二十二.基于国民MCU的COMP模块的比较案例文章目录二十二.基于国民MCU的COMP模块的比较案例0.总体功能概述1.相关开发环境2.比较器介绍2.1比较器应用之窗口模式2.2比较器应用之独立比较,生成打断信号生成2.3比较器应用之独立比较,BLANK特性3.COMP硬件独立比较案例3.1比较器输入VREF硬件连接3.2配置COMP4.总结5.参考5.参考0.总体功能概述2、端口配置:PB10选
- 蓝桥杯——算法训练——共线
大柠丶
蓝桥杯蓝桥杯算法职场和发展
问题描述给定2维平面上n个整点的坐标,一条直线最多能过几个点?输入格式第一行一个整数n表示点的个数以下n行,每行2个整数分别表示每个点的x,y坐标。输出格式输出一个整数表示答案。样例输入50011220323样例输出3数据规模和约定n<=1500,数据保证不会存在2个相同的点。点坐标在int范围内importjava.util.Scanner;/***@authorsjn*@date2022-2-
- 小白零基础学数学建模系列-引言与课程目录
川川菜鸟
数学建模小白到精通系列数学建模
目录引言一、我们的专辑包含哪些内容?第一周:数学建模基础与工具第二周:高级数学建模技巧与应用第三周:机器学习基础与数据处理第四周:监督学习与无监督学习算法第五周:神经网络二、学完本专辑能收获到什么?三、适合什么样的人群学习?四、如何学习本专辑?课程目录第1周:数学建模基础与工具第1天:数学建模入门介绍第2天:数学建模工具介绍第3天:线性回归与曲线拟合第4天:线性规划第5天:动态规划第2周:高级数学
- 线性代数-MIT 18.06-汇总
儒雅的钓翁
数学基础线性代数矩阵
第一讲:方程组的几何解释第二讲:矩阵消元第三讲:乘法和逆矩阵第四讲:AAA的LULULU分解第五讲:转换、置换、向量空间R第六讲:列空间和零空间第七讲:求解Ax=0Ax=0Ax=0,主变量,特解第八讲:求解Ax=bAx=bAx=b:可解性和解的结构第九讲:线性相关性、基、维数第十讲四个基本子空间第十一讲:矩阵空间、秩1矩阵和小世界图第十二讲:图和网络第十三讲:复习一第十四讲:正交向量与子空间第十五
- 深入解析深度学习中的过拟合与欠拟合诊断、解决与工程实践
古月居GYH
深度学习人工智能
一、引言:模型泛化能力的核心挑战在深度学习模型开发中,欠拟合与过拟合是影响泛化能力的两个核心矛盾。据GoogleBrain研究统计,工业级深度学习项目中有63%的失败案例与这两个问题直接相关。本文将从基础概念到工程实践,系统解析其本质特征、诊断方法及解决方案,并辅以可复现的代码案例。二、核心概念与通熟易懂解释简单而言,欠拟合是指模型不能在训练集上获得足够低的误差。换句换说,就是模型复杂度低,模型在
- 北斗导航 |低轨导航研究进展
单北斗SLAMer
卫星导航人工智能北斗三号GNSS算法低轨导航
低轨导航作为空天信息网络的重要组成部分,近年来在技术研发、系统构建及实际应用方面均取得显著进展。以下是基于最新研究动态的总结:一、技术研发与系统构建低轨导航增强系统技术突破2025年1月,青岛召开的低轨卫星导航增强系统技术发展研讨会汇集了国内26家单位的60名专家,重点讨论了低轨星座与现有导航系统(如北斗、GPS)的融合增强技术。例如:巨型导航星座数字仿真试验系统:国防科技大学刘文祥团队提出通过数
- Python 3 介绍(二十二)--mysql-connector-python
小蘑菇二号
零基础学Python--快速入门Python快速入门adb
目录安装mysql-connector-python基本使用示例1.连接到数据库2.插入数据3.更新数据4.删除数据进阶功能1.使用事务2.批量插入数据3.使用字典游标错误处理总结mysql-connector-python是一个用于Python的MySQL数据库驱动程序,它允许Python应用程序与MySQL数据库进行交互。这个驱动程序提供了高级别的API,支持多种Python版本,并且兼容多种
- 车牌识别技术揭秘:如何用 C# 实现自动车牌识别系统
威哥说编程
c#开发语言
车牌识别(LicensePlateRecognition,LPR)是一项计算机视觉技术,用于自动识别车辆的车牌号码。在实际应用中,车牌识别技术被广泛用于停车场管理、交通监控和安防系统等领域。实现车牌识别系统的关键步骤包括图像预处理、车牌检测、字符分割、字符识别等。C#中可以通过结合OpenCV、EmguCV、TesseractOCR等工具来实现车牌识别系统。一、所需工具和库EmguCV:这是一个封
- 关于神经网络中的正则化
文弱_书生
乱七八糟神经网络人工智能深度学习
神经网络训练中的正则化正则化(Regularization)是神经网络训练中的一个关键技术,主要用于防止模型过拟合(overfitting),提高泛化能力。1.为什么需要正则化?在神经网络训练过程中,模型的目标是找到能在训练数据上表现良好的参数,同时也能泛化到未见过的数据。如果一个模型过于复杂(如参数过多、层数过深),它可能会记住训练数据中的噪声,而不是学习数据的本质模式。这种情况称为过拟合(ov
- 顺序表以及顺序表的操作(数据结构初阶)
猫天帝
数据结构
线性表在学习顺序表之前,我们需要先了解一下什么是线性表。线性表(linearlist)是n个具有相同特性的数据元素的有限序列。线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串...线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在物理结构上并不一定是连续的,线性表在物理上存储时,通常以数组和链式结构的形式存储。物理结构与逻辑结构:所谓物理结构,就是数据实际
- 应用netdxf(C#)实现dxf文件读写-6、注释和标注
MariaWu2020
C#C#netdxf参数绘图
实现思路:实例化相应注释类(直线、角度、点延申、半/直径),并加入DxfDocument对象中。1、垂直、线性注释AlignedDimensiondim=newAlignedDimension(ref1,ref2,offset,style);//实例化垂直注释完整范例:DimensionStylestyle=DimensionStyle.Iso25;//标注格式Vector2ref1=Vector
- 图像识别技术与应用课后总结(20)
一元钱面包
人工智能
图像分割概念图像分割是把图像中不同像素划分到不同类别,预测目标轮廓,属于细粒度分类。比如将图像里不同物体、背景等区分开来,就像把一幅画里的各个元素精准归类。应用场景人像抠图:能精准分离人物和背景,用于图片编辑、影视制作等,比如去除照片背景换背景。医学组织提取:在医学影像(如CT、MRI图像)中分离出不同组织,辅助疾病诊断、手术规划等。遥感图像分析:分析卫星或航空遥感图像时,区分土地、植被、建筑等不
- 【机器学习】模型拟合
CH3_CH2_CHO
什么?!是机器学习!!机器学习人工智能欠拟合过拟合
1、欠拟合1.1现象欠拟合是机器学习和统计建模中的一种常见问题,表现为模型无法充分捕捉数据中的潜在规律和模式。无论是训练数据还是测试数据,模型的预测误差都居高不下。在实际应用中,欠拟合的模型往往显得过于简单和粗糙,无法对数据进行有效的拟合和描述。1.2原因模型过于简单是导致欠拟合的主要原因:例如,使用直线去拟合具有明显曲线趋势的数据,或者使用低阶多项式去拟合高阶的复杂函数关系。这种情况下,模型的表
- 32.代码随想录算法训练营第三十二天|509. 斐波那契数,70. 爬楼梯,746. 使用最小花费爬楼梯
白鹭鸣鸣!
算法javadp
32.代码随想录算法训练营第三十二天|509.斐波那契数,70.爬楼梯,746.使用最小花费爬楼梯DP数组的定义以及下标的含义递推公式动态规划的初始化是很重要的遍历顺序打印数组509.斐波那契数-力扣(LeetCode)斐波那契数(通常用F(n)表示)形成的序列称为斐波那契数列。该数列由0和1开始,后面的每一项数字都是前面两项数字的和。也就是:F(0)=0,F(1)=1F(n)=F(n-1)+F(
- DeepLabv3+改进18:在主干网络中添加REP_BLOCK
AICurator
深度学习python机器学习deeplabv3+语义分割
【DeepLabv3+改进专栏!探索语义分割新高度】你是否在为图像分割的精度与效率发愁?本专栏重磅推出:✅独家改进策略:融合注意力机制、轻量化设计与多尺度优化✅即插即用模块:ASPP+升级、解码器PS:订阅专栏提供完整代码论文简介我们提出了一种通用的卷积神经网络(ConvNet)构建模块,可在不增加推理时间成本的情况下提升性能。该模块名为多样化分支块(DBB),通过结合不同尺度和复杂度的多样化分支
- dfs(二十二)78. 子集
曾几何时`
#DFS深度优先算法数据结构
78.子集给你一个整数数组nums,数组中的元素互不相同。返回该数组所有可能的(幂集)。解集不能包含重复的子集。你可以按任意顺序返回解集。示例1:输入:nums=[1,2,3]输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]示例2:输入:nums=[0]输出:[[],[0]]提示:1>res;vectorpath;vector>subsets(vector
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟