【一些网站的收集】包含机器学习深度学习大牛主页等、 牛人主页(主页有很多论文代码)【真的好强大】

数学概念部分

坐标系,四元数等和3D有关的数学:http://www.cnblogs.com/xiefeifeihu/archive/2009/11/09/1599198.html.

三维旋转矩阵:http://wenku.baidu.com/view/cc110f88e53a580216fcfe13.html

旋转矩阵、欧拉角、四元数的比较:http://wenku.baidu.com/view/df9e2133eefdc8d376ee32c4.html

欧拉角和四元数的表示:http://wenku.baidu.com/view/c319fa116c175f0e7cd13791.html

四元数与旋转:http://blog.sina.com.cn/s/blog_557d254601018dfv.html

B样条曲线:http://www.cnblogs.com/begtostudy/archive/2010/07/28/1787284.html

非常好的概率统计学习的主页:http://statistics.zone/

误差方差偏差:http://scott.fortmann-roe.com/docs/BiasVariance.html

0 范数、1 范数、2 范数有什么区别?:file:///C:/Program%20Files%20(x86)/IntelSWTools/documentation_2017/en/mkl/ps2017/get_started.htm

编程语言学习

C#编程视频:http://lib.csdn.net/base/csharp/resource

OpenGL编程NeHe:http://www.cnblogs.com/irvinow/archive/2009/11/01/1594026.html

OpenGL官网:https://www.opengl.org/

OpenGL“我叫MT“纯手工3D动画制作之1——基础介绍:http://www.cnblogs.com/KC-Mei/p/4666099.html

【强大】非常好的OpenGL教程:http://ogldev.atspace.co.uk/index.html

【Python】从入门到机器学习的视频教程:https://morvanzhou.github.io/

跳动的心【非常好玩的代码】:http://blog.csdn.net/candycat1992/article/details/44040273

跳动的心【原始网站】:https://www.shadertoy.com/view/XsfGRn

绕任意单位轴旋转矩阵的计算:http://blog.csdn.net/pizi0475/article/details/7932909

3D图形编程:http://www.verysource.com/category/3d-graphic/

CMU图形学开设课程简介:http://www.cnblogs.com/wangze/archive/2010/04/05/1704839.html

bezier曲线控制,B样条绘制:http://www.cnblogs.com/zhuyaguang/p/4546967.html

opencv2.3在VS2008下的配置:http://blog.csdn.net/moc062066/article/details/6676117

opencv3.1在VS2013下的配置:http://www.th7.cn/Program/cp/201603/773871.shtml

LearnOpenGL简体中文版:http://bullteacher.com/category/zh_learnopengl_com

OpenGL教程【博客】:http://www.cnblogs.com/zhanglitong

FLTK(fast light toolkit):http://www.seriss.com/people/erco/fltk-videos/fltk-ms-vs-build.html

matlab中plot函数全功能解析:http://blog.sina.com.cn/s/blog_61c0518f0100f0lg.html

matlab图形着色:http://blog.sina.com.cn/s/blog_758521400102vp1a.html

CGJOY:http://www.cgjoy.com/#

火焰特效:http://blog.sina.com.cn/s/blog_5386fec20101750v.html

8小时学会HTML网页开发:http://edu.csdn.net/course/detail/535

Android基础班直播课程视频回放汇总贴:http://www.kgc.cn/bbs/post/6905.shtml

图灵机器人:http://www.csdn.net/tag/%E5%9B%BE%E7%81%B5%E6%9C%BA%E5%99%A8%E4%BA%BA

图灵机器人【官网】:http://www.tuling123.com/

C++编译各种有趣程序:http://www.demongan.com/content/?343.html

萌码【学编程的地方】:http://www.mengma.com/volumes

skeletonDrivenAnimation:http://www.pudn.com/downloads466/sourcecode/windows/opengl/detail1956574.html

【MKL】Intel数学核心库:https://software.intel.com/en-us/articles/intel-math-kernel-library-intel-mkl-2017-system-requirements

【GPU】非常好的官方科学计算cublas:http://docs.nvidia.com/cuda/cublas/#cublasxt_setPinningMemMode

学python、C++等非常简洁实用的网址:http://www.runoob.com/python/python-tutorial.html

Ogre图形开源库:https://paginas.fe.up.pt/~ruirodrig/wiki/doku.php?id=teaching:djco:ogre3d:ogretutorial04animation

动捕及计算机视觉

CMU动捕数据库:http://mocap.cs.cmu.edu/

另一个动捕数据库【提供了bvh格式】:http://accad.osu.edu/research/mocap/mocap_data.htm

HDM05动捕数据库:http://resources.mpi-inf.mpg.de/HDM05/index.html#downloads:cuts

Berkeley Multimodal Human Action Database (MHAD):http://tele-immersion.citris-uc.org/berkeley_mhad#desc

MPII Human Pose Dataset:http://human-pose.mpi-inf.mpg.de/

Human 3.6M:http://vision.imar.ro/human3.6m/description.php

makehuman:http://www.makehuman.org/download.php

另一个提供数据集的地方【还算比较详细,待研究】:https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture

Gaussian Process Dynamical Models for Human Motion【论文主页】:http://www.dgp.toronto.edu/~jmwang/gpdm/

运动编辑:http://wenku.baidu.com/link?url=NWI4MuZS95AF9zK0wgyMNVFA_Hr81QxpZfw06lW0w-Gv6HO6rGK_mq6qxY2Gr5UbBGVGnbCO7Wy5j16mWufZoBkxT6oyXzPQMi4uD2W0JAK

基于运动捕捉数据的人体运动编辑技术研究【论文】:http://max.book118.com/html/2014/0422/7841843.shtm

基于数据驱动的实时人体运动控制动画加界面【论文】:http://www.doc88.com/p-6724472199995.html

运动捕捉数据的处理与编辑技术的研究【论文】:http://www.doc88.com/p-9435446530659.html

动作捕捉ASF/AMC的OpenGL多线程程序:http://download.csdn.net/download/gaojin987/4475156

关节动画和人体动画:http://blog.csdn.net/pizi0475/article/details/5458687

机器学习技术在三维人体运动编辑中的研究【论文】:http://www.doc88.com/p-4055135283810.html

运动捕捉及运动编辑技术研究【论文】:http://www.docin.com/p-901093517.html

运动分割Segmenting Motion Capture Data into Distinct Behaviors :http://graphics.cs.cmu.edu/projects/segmentation/

Motion Computing Lab:http://motionlab.kaist.ac.kr/cglab/?page_id=1172

Motion Blending【文章,综述类】:http://image.diku.dk/projects/media/kristine.slot.07.pdf

Style Translation for Human Motion:http://people.csail.mit.edu/ehsu/work/sig05stf/

Conditional Restricted Boltzmann Machines:http://www.uoguelph.ca/~gwtaylor/thesis/4/

Dynamical Binary Latent Variable Models for 3D Human Pose Tracking:http://www.uoguelph.ca/~gwtaylor/publications/cvpr2010/

Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style:http://www.uoguelph.ca/~gwtaylor/publications/icml2009/

Continuous Character Control with Low-Dimensional Embeddings:http://graphics.stanford.edu/projects/ccclde/

Robust Generation of Dynamical Patterns in Human Motion by a Deep Belief Nets:http://cims.nyu.edu/~sainbar/

Real-Time Human Action Recognition Based on Depth Motion Maps:http://www.utdallas.edu/~cxc123730/depth_image_action_recognition.html

【序列拼接】CTW:http://www.f-zhou.com/ta_code.html

【序列拼接】ACA:http://www.f-zhou.com/tc_code.html

A Deep Learning Framework For Character Motion Synthesis and Editing:http://www.theorangeduck.com/page/deep-learning-framework-character-motion-synthesis-and-editing

Actions as Space-Time Shapes:http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

虚拟人行走的动作融合【论文】:http://www.docin.com/p-407446317.html

Mocap Toolbox:https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mocaptoolbox

Motion Style Toolbox:http://kforger.kapsi.fi/index.html#demos

python的MOCAP函数库: https://bitbucket.org/jonathan-schwarz/edinburgh_locomotion_mocap_dataset/overview

ASF/AMC格式解读:http://blog.sina.com.cn/s/blog_13cb8d10e0102vc9c.html

AS skeleton:http://graphics.cs.cmu.edu/nsp/course/15-464/Fall05/assignments/StartupCodeDescription.html

三维人体运动编辑与合成技术综述:http://wenku.baidu.com/link?url=RPdSQA7QMJ2Sjg7ZG-Ek3xPvrXl8yba1pUXELaRo6KIwI9Y2Clq11tfa3EFrMa-j1KeZBn9rGnQF14AZt7m0p25TE9AtA5CtDNOFiBK9YBW

运动插值【百度文库】:http://wenku.baidu.com/view/d3c7448d80eb6294dc886c36.html

CVCHINA计算机视觉网址导航:http://www.cvchina.net/hao123/

CVChina计算机视觉论坛:http://www.cvchina.net/catalog.asp?cate=7

cv视觉网【挺多人脸识别代码】:http://www.cvvision.cn/search/opencv/

AForge.NET【C#的计算机视觉库】:http://www.aforgenet.com/

学步园:http://www.xuebuyuan.com/

图像处理库综述:http://mp.weixin.qq.com/s?__biz=MzIzNDM2OTMzOQ==&mid=2247484374&idx=1&sn=3b5daa5aeb59bad4cdb6a5f3e612971a&scene=21#wechat_redirect

【人体运动仿真组】中科院:http://humanmotion.ict.ac.cn/PeopleList.html

opencv中文网,有教程:http://wiki.opencv.org.cn/index.php/Download#chm.E6.A0.BC.E5.BC.8F.E6.96.87.E6.A1.A3

International Audio Laboratories Erlangen与语音和CV有关,有demo:https://www.audiolabs-erlangen.de/fau/professor/mueller/data

任程的博客运动数据分割:http://www.cnblogs.com/ArenAK/archive/2010/12/19/1910404.html

Xiaowei Zhou运动数据重构:https://fling.seas.upenn.edu/~xiaowz/dynamic/wordpress/

Jovan Popović拼接、骨骼相关:http://homes.cs.washington.edu/~jovan/

CMU的工程主页,包含动捕方向:http://graphics.cs.cmu.edu/

ASF/AMC数据简介:http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html

BVH数据简介:http://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html

基于骨骼的3D姿态识别:第一篇、第二篇

Human Pose Estimation from Monocular Video:https://fling.seas.upenn.edu/~xiaowz/dynamic/wordpress/monocap/

【很强】摄像机矩阵解读:http://ksimek.github.io/

摄像机矩阵解读对应中文理解:http://haiyangxu.github.io/posts/2014/2014-06-12-camera-matrix.html

【人脸识别】主页:http://www.face-rec.org/algorithms/#Video

Master2: Deep Learning for 3D Human Motion:http://morpheo.inrialpes.fr/2016/09/30/master2-deep-learning-for-3d-human-motion/

【视频预测】Generating Videos with Scene Dynamics:http://web.mit.edu/vondrick/tinyvideo/

【Kinect】教程1:http://blog.csdn.net/zouxy09/article/category/1273380

【Kinect】教程2:http://www.cnblogs.com/yangecnu/p/Learning-KinectSDK.html

使用MATLAB机器视觉工具箱实现人脸的检测和跟踪:http://www.ilovematlab.cn/thread-201626-1-1.html

【运动重定向】Interactive Motion Mapping for Real-time Character Control:http://gvv.mpi-inf.mpg.de/projects/DirectMotionMapping/index.html

【声音处理工具箱】VOICEBOX: Speech Processing Toolbox for MATLAB:http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

运动学与逆运动学课程:http://www.comp.nus.edu.sg/~kkyin/CS3242/index.html

【3D模型纹理相关】CraGL: https://cragl.cs.gmu.edu/publications.html

【3D模型纹理相关】igl:http://igl.ethz.ch/code/

【3D模型纹理相关】libigl:http://libigl.github.io/libigl/

运动控制Michiel van de Panne:http://www.cs.ubc.ca/~van/

运动控制Computational Robotics Lab:http://crl.ethz.ch/publications.html

运动控制C.Karen Liu:https://www.cc.gatech.edu/~karenliu/Home.html

运动控制KangKang Yin:http://www.cs.sfu.ca/~kkyin/

地形适应Xue Bin (Jason) Peng:https://xbpeng.github.io/

gameanim:http://www.gameanim.com/

迪士尼开源动画软件: https://www.disneyanimation.com/technology/opensource

【逆运动学IK】Grandpa: http://multi-crash.com/?page_id=158

computer graphics&animation lab: http://calab.hanyang.ac.kr/cgi-bin/home.cgi

机器学习算法

一个牛人的随笔:http://leftnoteasy.cnblogs.com/

一系列的机器学习算法:http://www.csuldw.com/

SVD奇异值分解:http://blog.csdn.net/wangran51/article/details/7408414

LDA和PCA:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html#top

opencv实现聚类算法:http://blog.csdn.net/xlh145/article/details/8862680

SVM支持向量机算法概:http://blog.csdn.net/passball/article/details/7661887

支持向量机通俗导论:http://blog.csdn.net/macyang/article/details/38782399

PCA包含详细推导:http://wenku.baidu.com/link?url=lnF32-vrk4gqUIPAFTW4fDXpLMIr0ZG7GpHX3GGyNX34ZOhEdMaDZVp78ewbjcSmF0v5rh2DtOx4KWlUaxx9x63v_8LfjTwaL0jCU2HBeAS

PCA总结以及matlab实现:http://blog.csdn.net/watkinsong/article/details/8234766

PCA实现人脸检测:http://blog.csdn.net/mpbchina/article/details/7384425

人脸检测C++代码:http://mp.weixin.qq.com/s?__biz=MzI2OTAxNTg2OQ==&mid=209167362&idx=1&sn=db4de1e9aa1bb20c2a219d205031ef0a&scene=20&scene=23&srcid=0303gXglBWuhsGHtPmOqQE8Y#rd

matlab中princomp,pcacov,pcares,barttest四大分析函数的应用:http://blog.sina.com.cn/s/blog_6833a4df0100pwma.html

聚类算法Clustering by fast search and find of density peaks的实现:http://blog.csdn.net/jdplus/article/details/40351541#comments

聚类算法Clustering by fast search and find of density peaks的解读:http://blog.csdn.net/itplus/article/details/38926837

矩阵特征值分解与奇异值分解含义解析及应用:http://blog.csdn.net/xiahouzuoxin/article/details/41118351

HMM学习最佳范例:http://www.52nlp.cn/hmm-learn-best-practices-five-forward-algorithm-1

应该掌握的七种回归技术:http://www.csdn.net/article/2015-08-19/2825492

最小二乘法:http://blog.csdn.net/lotus___/article/details/20546259

隐马尔科夫模型攻略:http://blog.csdn.net/pi9nc/article/details/9068043

前向算法Forward algorithm:http://blog.csdn.net/jeiwt/article/details/8076019

最容易理解HMM的文章:http://blog.csdn.net/daringpig/article/details/8072794

Viterbi Algorithm维特比算法【原始资料】:http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/viterbi_algorithm/s1_pg10.html

隐马尔可夫模型(五)——隐马尔可夫模型的解码问题(维特比算法):http://www.cnblogs.com/kaituorensheng/archive/2012/12/04/2802140.html

HMM学习最佳范例七:前向-后向算法:http://blog.csdn.net/u010585135/article/details/43562585

隐马尔科夫(HMM)模型 前向后向(Forward_backward) 维特比 (viterbi)【代码解读】:http://blog.csdn.net/S20091103372/article/details/20400219

 隐马尔科夫模型HMM自学:http://blog.csdn.net/zhqz113144/article/details/9177507

机器学习(Part I)机器学习的种类:http://www.cnblogs.com/ysjxw/archive/2008/04/11/1149002.html

有监督学习与无监督学习:http://wenku.baidu.com/link?url=nM00xplnxWSo4QfgkfmVqGyr-0ebZl3Fp1XNAG4JA74qzCssmZToI7vB3apHMAOjQ6QeQjI1bUuYGaZBzs5RQUl_qVp4knCceHcr4DD0xqW

机器学习有监督学习之--回归:http://www.cnblogs.com/fanyabo/p/4060498.html

机器学习PartII:监督学习和无监督学习:http://www.cnblogs.com/ysjxw/archive/2008/04/11/1149004.html

斯坦福大学机器学习第二课 “单变量线性回归”:http://blog.csdn.net/u011584941/article/details/44961277

第六篇 平稳随机过程(Stationary Stochastic Processes):http://geodesy.blog.sohu.com/273957996.html

高斯过程之FGPLVM【代码工具包Faster GP-LVM software in MATLAB】:https://github.com/lawrennd/fgplvm

高斯过程之SGPLVM【代码工具包Gaussian process latent variable models with shared latent spaces (SGPLVM)】:https://github.com/SheffieldML/SGPLVM

Documentation for GPML Matlab Code version 3.6【高斯过程机器学习matlab代码】:http://www.gaussianprocess.org/gpml/code/matlab/doc/

如何通俗易懂地理解高斯过程:https://www.zhihu.com/question/46631426

Probabilistic PCA with GPLVM【附带概率PCA的高斯过程】:http://www.wikicoursenote.com/wiki/Probabilistic_PCA_with_GPLVM

Kernel Methods for Large Scale Representation Learning【核方法处理大范围表示学习】:http://www.cs.cmu.edu/~andrewgw/pattern/

动态时间规整(DTW):http://blog.csdn.net/liyuefeilong/article/details/45748399

什么是核函数,作用是什么:http://www.360doc.com/content/14/0728/15/14106735_397653989.shtml#

机器学习有很多关于核函数的说法,核函数的定义和作用是什么:https://www.zhihu.com/question/24627666

高斯核函数:http://blog.csdn.net/tianguokaka/article/details/6233369

随机梯度下降:http://www.cnblogs.com/murongxixi/p/3467365.html

梯度下降与随机梯度下降:http://blog.csdn.net/u014568921/article/details/44856915

【插值】插值:http://wenku.baidu.com/view/e9c7766b852458fb770b563c.html

【插值】插值:http://wenku.baidu.com/view/da8bcdad4b73f242326c5f79.html?re=view

【插值】第三章 实验数据的插值1:http://wenku.baidu.com/view/a88e268002d276a200292ebb.html?re=view

【插值】实验四 数据插值与拟合:http://wenku.baidu.com/view/03ab00e90975f46527d3e141.html?re=view

【插值】拉格朗日插值法 matlab:http://wenku.baidu.com/view/589dbf0c844769eae009ed4a.html

【插值】MATLAB编辑n次拉格朗日函数插值法的程序:http://wenku.baidu.com/view/0f3c6a6b561252d380eb6ed2.html

JMLR【Machine Learning Open Source Software有代码哦】:http://www.jmlr.org/mloss/

C#.NET开源项目、机器学习、商务智能:http://www.cnblogs.com/asxinyu/archive/2015/08/17/4733741.html

 位置敏感哈希Locality-Sensitive Hashing:http://blog.csdn.net/zwwkity/article/details/8559301

UDFDL机器学习教程:http://ufldl.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B

matlab神经网络视频教程:http://video.1kejian.com/video/?70286-0-0.html

機器學習基石 (Machine Learning Foundations)【教授 Hsuan-Tien Lin, 林軒田】:https://class.coursera.org/ntumlone-003/lecture

Probabilistic Models of Cognition:https://probmods.org/

低秩逼近【研究研究能发个论文出来】Low-Rank Matrix Recovery and Completion via Convex Optimization:http://perception.csl.illinois.edu/matrix-rank/introduction.html

【Matlab Audio Processing Examples】音频处理案例matlab代码:http://labrosa.ee.columbia.edu/matlab/

机器学习大纲:http://dlib.net/ml.html

【CUDA】深度学习框架:https://developer.nvidia.com/deep-learning-frameworks

【算法组】一个机器学习论坛:http://suanfazu.com/

【聊天机器人】:http://www.shareditor.com/bloglistbytag/?tagname=%E8%87%AA%E5%B7%B1%E5%8A%A8%E6%89%8B%E5%81%9A%E8%81%8A%E5%A4%A9%E6%9C%BA%E5%99%A8%E4%BA%BA

条件随机场:http://blog.csdn.net/chlele0105/article/details/14897761

LibSVM:http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Sigmoid函数、极大似然估计、损失函数以、梯度下降以及正则化:https://www.52ml.net/19641.html

【PRML】理论的MATLAB实现toolbox:http://cn.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox

【C++】机器学习和深度学习库:http://dlib.net/

深度学习相关

ReLu(Rectified Linear Units)激活函数: http://www.cnblogs.com/neopenx/p/4453161.html
Machine and Deep Learning with Python: https://github.com/szwed/awesome-machine-learning-python
ImageNet Classification with Deep ConvolutionalNeural Networks【文章】: http://www.cs.toronto.edu/~hinton/absps/imagenet.pdf
一个人的博客有关深度学习的几篇文章: https://www.52ml.net/tags/%E5%90%91%E9%87%8F/page/4
matRBM与受限玻尔兹曼机相关: https://code.google.com/archive/p/matrbm/
深度学习笔记: http://blog.csdn.net/carson2005/article/details/17185309
theano的主页: http://deeplearning.net/software/theano/index.htm l
theano documentation: http://deeplearning.net/software/theano/#
installation of theano on Windows: http://deeplearning.net/software/theano/install_windows.html#install-windows
TensorFlow: https://www.tensorflow.org/versions/r0.8/tutorials/seq2seq/index.html
百度的paddle主页: http://www.paddlepaddle.org/cn/index.html
【theano写DL模型】deeplearning tutorial: http://deeplearning.net/tutorial/
Neural Networks and Deep Learning: http://neuralnetworksanddeeplearning.com/index.html
WildML(RNN相关): http://www.wildml.com/
UFLDL深度学习(NG执笔): http://ufldl.stanford.edu/tutorial/
deeplearning book: http://www.deeplearningbook.org/
tiny-cnn开源库的使用(MNIST)【C++Windows版本】: http://blog.csdn.net/fengbingchun/article/details/50573841
Nature重磅:Hinton、LeCun、Bengio三巨头权威科普深度学习: http://www.dataguru.cn/article-7593-1.html
Deep Learning源代码收集-持续更新…: http://blog.csdn.net/zouxy09/article/details/11910527
【LSTM】Mourad Mourafiq【有LSTM的实现】: http://mourafiq.com/
Deeplearning4j Documentation & Site Map【DL教程,相当不错】: http://deeplearning4j.org/documentation
deeplearning documentation: http://deeplearning.net/tutorial/contents.html
windows下安装caffe【推荐看我前面写的安装博客】: http://suanfazu.com/t/windows-caffe/13579
【RNN】RECURRENT NEURAL NETWORKS TUTORIAL, PART 1 – INTRODUCTION TO RNNS: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
【RNN】循环神经网络(RNN, Recurrent Neural Networks)介绍: http://blog.csdn.net/heyongluoyao8/article/details/48636251
【RBM】RBM toolbox: https://github.com/skaae/rbm_toolbox
【RBM】A Beginner’s Tutorial for Restricted Boltzmann Machines: http://deeplearning4j.org/restrictedboltzmannmachine
【RBM】Ruslan Salakhutdinov主页的一个代码: http://www.cs.toronto.edu/~rsalakhu/code.html
【RBM】受限玻尔兹曼机: http://blog.csdn.net/pi9nc/article/details/19336535
【RBM】受限玻尔兹曼机: http://blog.csdn.net/zouxy09/article/details/8781396/
【RBM】受限玻尔兹曼机(RBM)学习笔记(三)能量函数和概率分布: http://blog.csdn.net/itplus/article/details/19168989
【RBM】限制玻尔兹曼机(Restricted Boltzmann Machine)学习笔记(一): http://blog.csdn.net/roger__wong/article/details/43374343
【CRBM第一篇】 Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations:
地址:http://web.eecs.umich.edu/~honglak/hl_publications.html
【CRBM第二篇】Unsupervised feature learning for audio classification using convolutional deep belief networks.
地址:http://web.eecs.umich.edu/~honglak/hl_publications.html
TIMIT数据集:http://www.fon.hum.uva.nl/david/ma_ssp/2007/TIMIT/
(提示下载方法,用wget -m)因为这个数据集貌似有版权问题,不变说太多,嘿嘿
【CNN】CS231n Convolutional Neural Networks for Visual Recognition: http://cs231n.github.io/neural-networks-1/#actfun
【RNN-RBM】Deep learning:四十九(RNN-RBM简单理解): http://www.cnblogs.com/tornadomeet/p/3439503.html
【caffe的VGG框架】: http://cs.stanford.edu/people/karpathy/vgg_train_val.prototxt
【caffe解析,以及一些深度学习框架的比较】: http://chenrudan.github.io/blog/2015/11/18/comparethreeopenlib.html
【深度学习框架对比】: http://www.infoq.com/cn/news/2016/01/evaluation-comparison-deep-learn
【caffe、tensorFlow、Mxnet对比】: http://chenrudan.github.io/blog/2015/11/18/comparethreeopenlib.html
【DNN】可视化每一层得到的结果: http://yosinski.com/deepvis
【可视化】Visualization of optimal stimuli and invariances  for Tiled Convolutional Neural Networks.: http://cs.stanford.edu/~quocle/TCNNweb/index.html
【NVIDIA】GPU学习社区:http://www.gpuworld.cn/
Keep Up With New Trends: http://handong1587.github.io/deep_learning/2016/07/27/keep-up-with-new-trends.html
15 Deep Learning Tutorials: http://www.datasciencecentral.com/profiles/blogs/15-deep-learning-tutorials
Documentation for Deconvolutional Network Toolbox: http://www.matthewzeiler.com/software/DeconvNetToolbox/Documentation/main.html
hinton的深度学习课程: https://www.youtube.com/playlist?list=PLnnr1O8OWc6bcYPBkaOzCyeTjIRd_kiaJ
dropout详解: https://pgaleone.eu/deep-learning/regularization/2017/01/10/anaysis-of-dropout/
深度学习几大应用论文,有大牛在: https://mila.umontreal.ca/publications/
深度玻尔兹曼机DBM的实现: http://www.dmi.usherb.ca/~larocheh/code/dbm_recnet.tar.gz
【有code,MOCAP】结构化RNN: http://asheshjain.org/srnn/
【超分辨率】Image Super-Resolution Using Deep Convolutional Networks: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
对抗网络各种文章搜集: https://github.com/zhangqianhui/AdversarialNetsPapers
黑白图片自动上色: 点击打开链接
【翻译】theano官方教程, 深度学习教程等:http://python.usyiyi.cn/

大牛及其它主页

CMU计算机科学:http://www.cs.cmu.edu/

刘更代大牛主页:http://www.cad.zju.edu.cn/home/liugengdai/#papers

Tapas Kanungo's Software Page【主要研究HMM】:http://www.kanungo.com/software/software.html

南京大学机器人智能与神经计算研究组:http://cs.nju.edu.cn/rinc/SOINN.html

Sheffield Machine Learning Software【github主页】:https://github.com/SheffieldML?page=2

YARIN GAL【主页,应该很厉害】:http://mlg.eng.cam.ac.uk/yarin/index.html

YARIN GAL中的一个部分,牵扯到GP和caffe【What My Deep Model Doesn't Know】:http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html

Ruslan Salakhutdinov:http://www.cs.toronto.edu/~rsalakhu/

Graham Taylor:http://www.cs.nyu.edu/~gwtaylor/pubs.html

Geoffrey E. Hinton:http://www.cs.toronto.edu/~hinton/还有一个RBM相关的http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html

Yoshua Bengio:http://www.iro.umontreal.ca/~bengioy/yoshua_en/index.html

Yann LeCun's Publications :http://yann.lecun.com/exdb/publis/index.html 主页是:http://yann.lecun.com/ex/index.html

Neil Lawrence Machine Learning:http://inverseprobability.com/

Aaron Hertzmann:http://www.dgp.toronto.edu/~hertzman/index.html

Sam Roweis:http://www.cs.nyu.edu/~roweis/code.html

Dr徐亦达【在优酷上有机器学习课程哦】:http://www-staff.it.uts.edu.au/~ydxu/index.htm

Alexei (Alyosha) Efros:http://people.eecs.berkeley.edu/~efros/

Roland Memisevic:http://www.iro.umontreal.ca/~memisevr/

 Eugene Hsu:http://www.squicky.org/cv/

Wei Liu:http://www.cs.unc.edu/~wliu/

Yangqing Jia (贾扬清)【caffe创始人,你说厉害不】:http://daggerfs.com/

David J Fleet:http://www.cs.toronto.edu/~fleet/

Tomohiko MUKAI:http://mukai-lab.org/mukai/

【此人CRBM研究的比较多】Honglak Lee:http://web.eecs.umich.edu/~honglak/hl_publications.html

【CRBM大牛】Alex Krizhevsky:http://www.cs.utoronto.ca/~kriz/

【RNN大神】Ilya:http://www.cs.utoronto.ca/~ilya/pubs/

【噪声卷积,时空RBM】Sainbayar Sukhbaatar:http://cims.nyu.edu/~sainbar/

【CRBM大牛】PENG QI:http://qipeng.me/software/convolutional-rbm.html#reference

【Daniel Holden】http://www.theorangeduck.com/page/all

bharath hariharan:http://home.bharathh.info/

Katerina Fragkiadaki:http://people.eecs.berkeley.edu/~katef/

Matthew Zeiler: http://www.matthewzeiler.com/

【搞检测的大牛】:RBG:https://people.eecs.berkeley.edu/~rbg/index.html

【CVPR2016】code+paper网址:https://tensortalk.com/?cat=conference-cvpr-2016&t=type-code

SIGGRAPH 2015 papers on the web:http://kesen.realtimerendering.com/sig2015.html

【运动捕捉CMU大牛的主页】有代码CTW和GTW:http://www.cs.cmu.edu/~ftorre/codedata.html

【finetuning和迁移学习】好文章:http://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650718634&idx=1&sn=1220e691541c34281c64655a01793cb0&scene=0#rd

微软研究院刘世霞,做了CNN的可视化,非常好:http://shixialiu.com/

何凯明大神,你懂得:http://kaiminghe.com/

【RNN高手】Ilya Sutskever:http://www.cs.toronto.edu/~ilya/pubs/

【DBM实现大牛】Hugo Larochelle:http://www.dmi.usherb.ca/~larocheh/publications_en.html

【姿态估计】SJTU Machine Vision and Intelligence Group Cewu Lu Publications Code Courses

【姿态估计】初晓:http://www.ee.cuhk.edu.hk/~xchu/

【图像复原】郑海永:http://vision.ouc.edu.cn/~zhenghaiyong/

【图像复原】顾舒航:https://sites.google.com/site/shuhanggu/home

【图像修复,行为识别】Lei Zhang: http://www4.comp.polyu.edu.hk/~cslzhang/

【LSTM卷积】Long-term Recurrent Convolutional Networks:http://jeffdonahue.com/lrcn/

【3D重构,运动捕捉】Tomas Simon:http://www.cs.cmu.edu/~tsimon/

【DBM和dropout】Nitish Srivastava:http://www.cs.toronto.edu/~nitish/

【各种图形学会议论文列表】倾向于3D动画方向:http://kesen.realtimerendering.com/


几个学习网站

csdn:http://www.csdn.net/

博客园:http://www.cnblogs.com/

我爱自然语言处理NLP:http://www.52nlp.cn/

Coursera:https://www.coursera.org/

matlab中文论坛:http://www.ilovematlab.cn/forum.php

知乎:https://www.zhihu.com/

gitxiv【有论文有代码极力推荐】:http://gitxiv.com/

tensortalk【另一个有代码和论文的地方】:https://tensortalk.com/?t=type-code

csdn的公开课:http://edu.csdn.net/huiyiCourse/index

Publications【一堆论文,部分有代码】:https://www.cs.toronto.edu/~ilya/pubs/

Jack M. Wang:http://www.dgp.toronto.edu/~jmwang/

【天津大学深度学习一线实战研讨班干货总结与资源下载】:http://datasci.tju.edu.cn/data/index1?sukey=3997c0719f1515200399a26940a285f019a686a850fcc3d81290e00ce57e15e915fbabfbca74f113889c6a7bc0ce4a23

【valse】教学视频:http://vision.ouc.edu.cn/valse/

机器之心:http://www.jiqizhixin.com/insights

【自然语言处理NLP】大牛博客:http://licstar.net/archives/category/%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86

其它

代码托管网站【码云】:http://git.oschina.net/

代码素材网:http://www.16sucai.com/daima/

百度、腾讯、搜狐、360等产品职位笔试智力题分析:http://blog.csdn.net/foreverdengwei/article/details/7683975#comments

百度 机器学习/数据挖掘 一面 被淘汰 记:http://blog.csdn.net/mpbchina/article/details/8018005

常见面试之机器学习算法思想简单梳理:http://blog.csdn.net/jirongzi_cs2011/article/details/15720447

NLPjob【找自然语言处理工作】:http://www.nlpjob.com/jobs/machine-learning/

Pro Git v2中文版:http://wiki.jikexueyuan.com/project/pro-git-two/

测测IQ:http://iqtest.dk/main.swf

CVPR 2015 papers:http://cs.stanford.edu/people/karpathy/cvpr2015papers/

CVPR2015:http://techtalks.tv/cvpr/2015/?url_type=39&object_type=webpage&pos=1

绘制流程图:https://www.processon.com/diagrams

Engineering Village【找论文】:https://www.engineeringvillage.com/home.url?acw=

手写识别数据库THE MNIST DATABASE of handwritten digits:http://yann.lecun.com/exdb/mnist/

中国智能网:http://www.5iai.com/

SIGGRAPH 2016 papers on the web:http://www.kesen.realtimerendering.com/sig2016-changelog.html

windows下的WGET下载东西:http://www.interlog.com/~tcharron/wgetwin.html

WGET各参数介绍:http://blog.csdn.net/cnki_ok/article/details/7921239

【PPT】模板素材网站:http://www.officeplus.cn/p/94/102194.shtml

Texlive简洁教程:http://liam0205.me/2014/09/08/latex-introduction/

下载YOUTUBE视频:https://www.youtubeto.com/zh/#

字幕制作:http://www.arctime.org/create-bilingual-subtitles.html

【破解软件】http://www.shaoit.com/

主流画图软件:http://mp.weixin.qq.com/s?__biz=MzI1NTI4OTIxMA==&mid=2247483898&idx=1&sn=bef156d5e2680e184e763aab194dedd1&scene=21#wechat_redirect

免费创建属于自己的网站:https://sites.google.com/

cudnn各版本官方网址下载:点击打开链接


牛人主页(主页有很多论文代码)

Serge Belongie at UC San Diego
Antonio Torralba  at MIT
Alexei Ffros at CMU
Ce Liu  at Microsoft Research New England
Vittorio Ferrari  at Univ.of Edinburgh
Kristen Grauman  at UT Austin
Devi Parikh at   TTI-Chicago  (Marr Prize at ICCV2011)
John Wright at Columbia Univ.
Piotr Dollar  at CalTech
Boris Babenko  at UC San Diego
David Ross  at Google/Youtube

 

相关领域:
Terence Tao at UCLA
David Donoho at Stanford Univ.
 
大神们:
William T. Freeman at MIT
Roberto Cipolla at Cambridge
David Lowe at Univ. of British Columbia
Mubarak Shah at Univ. of Central Florida
Yi Ma at MSRA
Tinne Tuytelaars at K.U. Leuven
Trevor Darrell at U.C. Berkeley
Michael J. Black at Brown Univ.



重要研究组:
Computer Vision Group at UC Berkeley
Robotics Research Group at Univ. of Oxford
LEAR at INRIA
Computer Vision Lab at Stanford
Computer Vision Lab at EPFL
Computer Vision Lab at ETH Zurich
Computer Vision Lab at Seoul National Univ.
Computer Vision Lab at UC San Diego
Computer Vision Lab at UC Santa Cruz
Computer Vision Lab  at Univ. of Southern California
Computer Vision Lab at Univ. of Central Florida
Computer Vision Lab at Columbia Univ.
UCLA Vision Lab
Motion and Shape Computing Group at George Mason Univ.
Robust Image Understanding Lab at Rutgers Univ.
Intelligent Vision Systems Group at Univ. of Bonn
Institute for Computer Graphics and Vision at Graz Univ. of Tech.
Computer Vision Lab. at Vienna Univ. of Tech. 
Computational Image Analysis and Radiology at Medical Univ. of Vienna
Personal Robotics Lab at CMU
Visual Perception Lab at Purdue Univ.

 
潜力牛人:
Juergen Gall at  ETH Zurich
Matt Flagg at Georgia Tech.
Mathieu Salzmann at TTI-Chicago
Gerg Shakhnarovich  at TTI-Chicago
Taeg Sang Cho  at MIT
Jianchao Yang  at UIUC
Stefan Roth at TU Darmstadt
Peter Kontschieder  at Graz Univ. of Tech.
Dominik Alexander Klein  at Univ. of Bonn
Yinan Yu at CASIA (PASCAL VOC 2010 Detection Challenge Winner)
Zdenek Kalal  at FPFL
Julien Pilet at FPFL
Kenji Okuma
 
(1)googleResearch;  http://research.google.com/index.html
(2)MIT博士,汤晓欧学生林达华;  http://people.csail.mit.edu/dhlin/index.html
(3)MIT博士后Douglas Lanman;  http://web.media.mit.edu/~dlanman/
(4)opencv中文网站;  http://www.opencv.org.cn/index.php/首页
(5)Stanford大学vision实验室;  http://vision.stanford.edu/research.html
(6)Stanford大学博士崔靖宇;  http://www.stanford.edu/~jycui/
(7)UCLA教授朱松纯;  http://www.stat.ucla.edu/~sczhu/
(8)中国人工智能网;  http://www.chinaai.org/
(9)中国视觉网;  http://www.china-vision.net/
(10)中科院自动化所;  http://www.ia.cas.cn/
(11)中科院自动化所李子青研究员;  http://www.cbsr.ia.ac.cn/users/szli/
(12)中科院计算所山世光研究员;  http://www.jdl.ac.cn/user/sgshan/
(13)人脸识别主页;  http://www.face-rec.org/
(14)加州大学伯克利分校CV小组;  http://www.eecs.berkeley.edu/Research/Projects/CS/vision/

(15)南加州大学CV实验室; http://iris.usc.edu/USC-Computer-Vision.html
(16)卡内基梅隆大学CV主页;

http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html

(17)微软CV研究员Richard Szeliski;http://research.microsoft.com/en-us/um/people/szeliski/
(18)微软亚洲研究院计算机视觉研究组; http://research.microsoft.com/en-us/groups/vc/
(19)微软剑桥研究院ML与CV研究组; http://research.microsoft.com/en-us/groups/mlp/default.aspx

(20)研学论坛; http://bbs.matwav.com/
(21)美国Rutgers大学助理教授刘青山;http://www.research.rutgers.edu/~qsliu/
(22)计算机视觉最新资讯网; http://www.cvchina.info/
(23)运动检测、阴影、跟踪的测试视频下载;http://apps.hi.baidu.com/share/detail/18903287
(24)香港中文大学助理教授王晓刚; http://www.ee.cuhk.edu.hk/~xgwang/
(25)香港中文大学多媒体实验室(汤晓鸥); http://mmlab.ie.cuhk.edu.hk/
(26)U.C. San Diego. computer vision;http://vision.ucsd.edu/content/home
(27)CVonline; http://homepages.inf.ed.ac.uk/rbf/CVonline/
(28)computer vision software;http://peipa.essex.ac.uk/info/software.html
(29)Computer Vision Resource; http://www.cvpapers.com/
(30)computer vision research groups;http://peipa.essex.ac.uk/info/groups.html
(31)computer vision center; http://computervisioncentral.com/cvcnews

(32)浙江大学图像技术研究与应用(ITRA)团队:http://www.dvzju.com/

(33)自动识别网:http://www.autoid-china.com.cn/

(34)清华大学章毓晋教授:http://www.tsinghua.edu.cn/publish/ee/4157/2010/20101217173552339241557/20101217173552339241557_.html

(35)顶级民用机器人研究小组Porf.Gary领导的Willow Garage:http://www.willowgarage.com/

(36)上海交通大学图像处理与模式识别研究所:http://www.pami.sjtu.edu.cn/

(37)上海交通大学计算机视觉实验室刘允才教授:http://www.visionlab.sjtu.edu.cn/

(38)德克萨斯州大学奥斯汀分校助理教授Kristen Grauman :http://www.cs.utexas.edu/~grauman/

(39)清华大学电子工程系智能图文信息处理实验室(丁晓青教授):http://ocrserv.ee.tsinghua.edu.cn/auto/index.asp

(40)北京大学高文教授:http://www.jdl.ac.cn/htm-gaowen/

(41)清华大学艾海舟教授:http://media.cs.tsinghua.edu.cn/cn/aihz

(42)中科院生物识别与安全技术研究中心:http://www.cbsr.ia.ac.cn/china/index CH.asp

(43)瑞士巴塞尔大学 Thomas Vetter教授:http://informatik.unibas.ch/personen/vetter_t.html

(44)俄勒冈州立大学 Rob Hess博士:http://blogs.oregonstate.edu/hess/

(45)深圳大学 于仕祺副教授:http://yushiqi.cn/

(46)西安交通大学人工智能与机器人研究所:http://www.aiar.xjtu.edu.cn/

(47)卡内基梅隆大学研究员Robert T. Collins:http://www.cs.cmu.edu/~rcollins/home.html#Background

(48)MIT博士Chris Stauffer:http://people.csail.mit.edu/stauffer/Home/index.php

(49)美国密歇根州立大学生物识别研究组(Anil K. Jain教授):http://www.cse.msu.edu/rgroups/biometrics/

(50)美国伊利诺伊州立大学Thomas S. Huang:http://www.beckman.illinois.edu/directory/t-huang1

(51)武汉大学数字摄影测量与计算机视觉研究中心:http://www.whudpcv.cn/index.asp

(52)瑞士巴塞尔大学Sami Romdhani助理研究员:http://informatik.unibas.ch/personen/romdhani_sami/

(53)CMU大学研究员Yang Wang:http://www.cs.cmu.edu/~wangy/home.html

(54)英国曼彻斯特大学Tim Cootes教授:http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/

(55)美国罗彻斯特大学教授Jiebo Luo:http://www.cs.rochester.edu/u/jluo/

(56)美国普渡大学机器人视觉实验室:https://engineering.purdue.edu/RVL/Welcome.html

(57)美国宾利州立大学感知、运动与认识实验室:http://vision.cse.psu.edu/home/home.shtml

(58)美国宾夕法尼亚大学GRASP实验室:https://www.grasp.upenn.edu/

(59)美国内达华大学里诺校区CV实验室:http://www.cse.unr.edu/CVL/index.php

(60)美国密西根大学vision实验室:http://www.eecs.umich.edu/vision/index.html

(61)University of Massachusetts(麻省大学),视觉实验室:http://vis-www.cs.umass.edu/index.html

(62)华盛顿大学博士后Iva Kemelmacher:http://www.cs.washington.edu/homes/kemelmi

(63)以色列魏茨曼科技大学Ronen Basri:http://www.wisdom.weizmann.ac.il/~ronen/index.html

(64)瑞士ETH-Zurich大学CV实验室:http://www.vision.ee.ethz.ch/boostingTrackers/index.htm

(65)微软CV研究员张正友:http://research.microsoft.com/en-us/um/people/zhang/

(66)中科院自动化所医学影像研究室:http://www.3dmed.net/

(67)中科院田捷研究员:http://www.3dmed.net/tian/

(68)微软Redmond研究院研究员Simon Baker:http://research.microsoft.com/en-us/people/sbaker/

(69)普林斯顿大学教授李凯:http://www.cs.princeton.edu/~li/
(70)普林斯顿大学博士贾登:http://www.cs.princeton.edu/~jiadeng/
(71)牛津大学教授Andrew Zisserman: http://www.robots.ox.ac.uk/~az/
(72)英国leeds大学研究员Mark Everingham:http://www.comp.leeds.ac.uk/me/
(73)英国爱丁堡大学教授Chris William: http://homepages.inf.ed.ac.uk/ckiw/
(74)微软剑桥研究院研究员John Winn: http://johnwinn.org/
(75)佐治亚理工学院教授Monson H.Hayes:http://savannah.gatech.edu/people/mhayes/index.html
(76)微软亚洲研究院研究员孙剑:http://research.microsoft.com/en-us/people/jiansun/
(77)微软亚洲研究院研究员马毅:http://research.microsoft.com/en-us/people/mayi/
(78)英国哥伦比亚大学教授David Lowe: http://www.cs.ubc.ca/~lowe/
(79)英国爱丁堡大学教授Bob Fisher: http://homepages.inf.ed.ac.uk/rbf/
(80)加州大学圣地亚哥分校教授Serge J.Belongie:http://cseweb.ucsd.edu/~sjb/
(81)威斯康星大学教授Charles R.Dyer: http://pages.cs.wisc.edu/~dyer/
(82)多伦多大学教授Allan.Jepson: http://www.cs.toronto.edu/~jepson/
(83)伦斯勒理工学院教授Qiang Ji: http://www.ecse.rpi.edu/~qji/
(84)CMU研究员Daniel Huber: http://www.ri.cmu.edu/person.html?person_id=123
(85)多伦多大学教授:David J.Fleet: http://www.cs.toronto.edu/~fleet/
(86)伦敦大学玛丽女王学院教授Andrea Cavallaro:http://www.eecs.qmul.ac.uk/~andrea/
(87)多伦多大学教授Kyros Kutulakos: http://www.cs.toronto.edu/~kyros/
(88)杜克大学教授Carlo Tomasi: http://www.cs.duke.edu/~tomasi/
(89)CMU教授Martial Hebert: http://www.cs.cmu.edu/~hebert/
(90)MIT助理教授Antonio Torralba: http://web.mit.edu/torralba/www/
(91)马里兰大学研究员Yasel Yacoob: http://www.umiacs.umd.edu/users/yaser/
(92)康奈尔大学教授Ramin Zabih: http://www.cs.cornell.edu/~rdz/

(93)CMU博士田渊栋: http://www.cs.cmu.edu/~yuandong/
(94)CMU副教授Srinivasa Narasimhan: http://www.cs.cmu.edu/~srinivas/
(95)CMU大学ILIM实验室:http://www.cs.cmu.edu/~ILIM/
(96)哥伦比亚大学教授Sheer K.Nayar: http://www.cs.columbia.edu/~nayar/
(97)三菱电子研究院研究员Fatih Porikli :http://www.porikli.com/
(98)康奈尔大学教授Daniel Huttenlocher:http://www.cs.cornell.edu/~dph/
(99)南京大学教授周志华:http://cs.nju.edu.cn/zhouzh/index.htm
(100)芝加哥丰田技术研究所助理教授Devi Parikh: http://ttic.uchicago.edu/~dparikh/index.html
(101)瑞士联邦理工学院博士后Helmut Grabner: http://www.vision.ee.ethz.ch/~hegrabne/#Short_CV

(102)香港中文大学教授贾佳亚:http://www.cse.cuhk.edu.hk/~leojia/index.html

(103)南洋理工大学副教授吴建鑫:http://c2inet.sce.ntu.edu.sg/Jianxin/index.html

(104)GE研究院研究员李关:http://www.cs.unc.edu/~lguan/

(105)佐治亚理工学院教授Monson Hayes:http://savannah.gatech.edu/people/mhayes/

(106)图片检索国际会议VOC(微软剑桥研究院组织):http://pascallin.ecs.soton.ac.uk/challenges/VOC/

(107)机器视觉开源处理库汇总:http://archive.cnblogs.com/a/2217609/

(108)布朗大学教授Benjamin Kimia: http://www.lems.brown.edu/kimia.html 

 

 

about multi-camera: http://server.cs.ucf.edu/~vision/projects.html

 

about 3D Voxel Coloring   Rob Hess: http://blogs.oregonstate.edu/hess/code/voxels/ 

 

About  the particle filters--condensation filter:http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/ISARD1/condensation.html

 

Machine Learning Open Source Software:http://jmlr.csail.mit.edu/mloss/

 

1、动作识别数据库:Recognition of human actions:http://www.nada.kth.se/cvap/actions/

 

2、Datasets for Computer Vision Research:http://www-cvr.ai.uiuc.edu/ponce_grp/data/

 

3、Computer Vision Datasets:http://clickdamage.com/sourcecode/cv_datasets.php

 

4、里面有好多基本算法 matlab:  http://www.mathworks.cn/index.html

 

5、CVPR 2011中关于grassmann 流形文章的源码: http://itee.uq.edu.au/~uqmhara1/code.html

 

  • Matlab Codefor Graph Embedding Discriminant Analysis on Grassmannian Manifolds for Improved Image Set Matching (CVPR), 2011.
  • Matlab Codefor Optimal Local Basis: A Reinforcement Learning Approach for Face Recognition(IJCV), vol. 81, no. 2, pp. 191-204, 2009.

 

 牛人bolg:

 

1、Hong Kong Polytechnic University :http://www4.comp.polyu.edu.hk/~cslzhang/

 

2、Computer Vision Resources:资源非常丰富,包含有基本算法。https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html

 

3、源代码非常丰富~~  http://homepage.tudelft.nl/19j49/Publications.html

 

CVonline

http://homepages.inf.ed.ac.uk/rbf/CVonline

http://homepages.inf.ed.ac.uk/rbf/CVonline/unfolded.htm

http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm

 

李子青的大作:

Markov Random Field Modeling in Computer Vision

http://www.cbsr.ia.ac.cn/users/szli/mrf_book/book.html

Handbook of Face Recognition (PDF)

http://www.umiacs.umd.edu/~shaohua/papers/zhou04hfr.pdf


 

 

张正友的有关参数鲁棒估计著作:

Parameter Estimation Techniques:A Tutorial with Application to Conic Fitting

http://research.microsoft.com/~zhang/INRIA/Publis/Tutorial-Estim/Main.html



Andrea Fusiello“计算机视觉中的几何”教程:Elements of Geometric Computer Vision

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html#x1-520007


 

有关马尔可夫蒙特卡罗方法的资料:

An introduction to Markov chain Monte Carlo

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SENEGAS/mcmc.html

Markov Chain Monte Carlo for Computer Vision--- A tutorial at ICCV05

       http://civs.stat.ucla.edu/MCMC/MCMC_tutorial.htm

 

有关独立成分分析(Independent Component Analysis , ICA)的资料:

An ICA-Page

http://www.cnl.salk.edu/~tony/ica.html

Fast ICA

http://www.cis.hut.fi/projects/ica/fastica/

 

       The Kalman Filter (介绍卡尔曼滤波器的终极网页)

      http://www.cs.unc.edu/~welch/kalman/index.html

 

Cached k-d tree search for ICP algorithms

http://kos.informatik.uni-osnabrueck.de/download/3dim2007/paper.html



几个计算机视觉研究工具

Machine Vision Toolbox for Matlab

http://www.petercorke.com/Machine Vision Toolbox.html


Matlab and Octave Function for Computer Vision and Image Processing

http://www.csse.uwa.edu.au/~pk/research/matlabfns/

 

Bayes Net Toolbox for Matlab

http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html


OpenCV (Chinese)

http://www.opencv.org.cn/index.php/首页

 

Gandalf (A Computer Vision and Numerical Algorithm Labrary)

http://gandalf-library.sourceforge.net/

 

CMU Computer Vision Home Page

http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/vision.html

 

Machine Learning Resource Links

http://www.cse.ust.hk/~ivor/resource.htm

 

The Bayesian Filtering Library

http://www.orocos.org/bfl

 

Optical Flow Algorithm Evaluation (提供了一个动态贝叶斯网络框架,例如递归信息处理与分析、卡尔曼滤波、粒子滤波、序列蒙特卡罗方法等,C++写的)

http://of-eval.sourceforge.net/

 

MATLAB code for ICP algorithm

http://www.usenet.com/newsgroups/comp.graphics.visualization/msg00102.html

 

牛人主页:

朱松纯 (Song-Chun Zhu

http://www.stat.ucla.edu/~sczhu/

 

David Lowe (SIFT) (很帅的一个老头哦 ^ ^)

http://www.cs.ubc.ca/~lowe/

 

Andrea Vedaldi (SIFT)

http://vision.ucla.edu/~vedaldi/index.html

 

Pedro F. Felzenszwalb

http://people.cs.uchicago.edu/~pff/

 

Dougla Dlanman (Brown的一个研究生,在其主页上搜集了大量算法教程和源码)

http://mesh.brown.edu/dlanman/courses.html

 

Jianbo Shi (Ncuts 的始作俑者)

http://www.cis.upenn.edu/~jshi/

 

Active Vision Group (Oxford的一个机器视觉研究团队,特色是SLAM,监视,导航)

http://www.robots.ox.ac.uk/ActiveVision/index.html

 

Juyang Weng(机器学习的专家,Autonomous Mental Development 是其特色

http://www.cse.msu.edu/~weng/

测试图片或视频:

Middlebury College‘s Stereo Vision Data Set

http://cat.middlebury.edu/stereo/data.html

 

 

Intelligent Vehicle:

IVSource

www.ivsoruce.net

Robot Car

http://www.plyojump.com/robot_cars.html

How to Build a Robot: The Computer Vision Part

http://www.societyofrobots.com/programming_computer_vision_tutorial.shtml

 

收集的一般牛人主页(带代码):

 Xiaofei He(machine learning code)

http://people.cs.uchicago.edu/~xiaofei/

 YingNian Wu(active base model code)

http://www.stat.ucla.edu/~ywu/research.html

 布朗大学计算机主页(可找到该校CS牛人博客)

http://www.cs.brown.edu/research/areas.html

Navneet Dalal(Histograms of Oriented Gradients for Human Detection )

http://www.navneetdalal.com/software

Paul Viola(Robust Real-time Object Detection)

http://research.microsoft.com/en-us/um/people/viola/

 

 

 

人工智能与模式识别国际顶级期刊会议目录(包含该领域最权威的期刊和会议)


你可能感兴趣的:(【一些网站的收集】包含机器学习深度学习大牛主页等、 牛人主页(主页有很多论文代码)【真的好强大】)