Handler机制是一套Android消息传递机制。在Android开发多线程的应用场景中,将工作线程中需更新UI的操作信息 传递到 UI主线程,从而实现 工作线程对UI的更新处理,最终实现异步消息的处理。
在Android开发中,为了UI操作是线程安全的,规定了只允许主线程更新Activity里的UI组件。但在实际开发中,存在多个线程并发操作UI组件的情况,导致UI操作线程不安全。故采用Handler消息传递机制,是工作线程需更新UI时,通过Handler通知主线程,从而在主线程中更新UI操作
当应用程序第一次启动时,会同时自动开启1条主线程,用于处理UI相关的事件(如更新、操作等)
人为手动开启的线程,执行耗时操作(如网络请求、数据加载等)
线程间通讯的数据单元(即Handler接受 & 处理的消息对象),用于存储需要操作的通信信息
一种数据结构(先进先出),存储Handler发送过来的消息(Message)
Handler为主线程与子线程的通信媒介,是线程消息的主要处理者。用于添加消息(Message)到消息队列(Message Queue),处理循环器(Looper)分派过来的消息(Message)
消息队列(Message Queue)与处理者(Handler)的通信媒介,用于消息循环,即
(1)消息获取:循环取出消息队列(Message Queue)的消息(Message)
(2)消息分发:将取出的消息(Message)发送给对应的处理者(Handler)
每个线程只能拥有1个Looper,1个Looper可绑定多个线程的Handler,即多个线程可往1个Looper所持有的MessageQueue中发送消息,提供线程间通信的可能
// 步骤1:自定义Handler子类(继承Handler类) & 复写handleMessage()方法
class mHandler extends Handler {
// 通过复写handlerMessage() 从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
...// 需执行的UI操作
}
}
// 步骤2:在主线程中创建Handler实例
private Handler mhandler = new mHandler();
// 步骤3:创建所需的消息对象
Message msg = Message.obtain(); // 实例化消息对象
msg.what = 1; // 消息标识
msg.obj = "AA"; // 消息内容存放
// 步骤4:在工作线程中 通过Handler发送消息到消息队列中
// 可通过sendMessage() / post()
// 多线程可采用AsyncTask、继承Thread类、实现Runnable
mHandler.sendMessage(msg);
// 步骤5:开启工作线程(同时启动了Handler)
// 多线程可采用AsyncTask、继承Thread类、实现Runnable
// 步骤1:在主线程中 通过匿名内部类 创建Handler类对象
private Handler mhandler = new Handler(){
// 通过复写handlerMessage()从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
...// 需执行的UI操作
}
};
// 步骤2:创建消息对象
Message msg = Message.obtain(); // 实例化消息对象
msg.what = 1; // 消息标识
msg.obj = "AA"; // 消息内容存放
// 步骤3:在工作线程中 通过Handler发送消息到消息队列中
// 多线程可采用AsyncTask、继承Thread类、实现Runnable
mHandler.sendMessage(msg);
// 步骤4:开启工作线程(同时启动了Handler)
// 多线程可采用AsyncTask、继承Thread类、实现Runnable
// 步骤1:在主线程中创建Handler实例
private Handler mhandler = new mHandler();
// 步骤2:在工作线程中 发送消息到消息队列中 & 指定操作UI内容
// 需传入1个Runnable对象
mHandler.post(new Runnable() {
@Override
public void run() {
... // 需执行的UI操作
}
});
// 步骤3:开启工作线程(同时启动了Handler)
// 多线程可采用AsyncTask、继承Thread类、实现Runnable
在主线程中创建
(1)循环器 对象(Looper)
(2)消息队列 对象(Message Queue)
(3)Handler对象
Looper、Message Queue均属于主线程,创建Message Queue后,Looper自动进入消息循环。此时,Handler自动绑定了主线程的Looper、Message Queue
工作线程通过Handler发送消息(Message)到消息队列(Message Queue)中,该消息内容=工作线程对UI的操作
消息出队:Looper循环取出消息队列(Message Queue)中的消息(Message)
消息分发:Looper将去除的消息(Message)发送给创建该消息的处理者(Handler)
在消息循环过程中,若消息队列为空,则线程阻塞。
处理者Handler接受循环器Looper发送过来的消息(Message)
处理者Handler根据消息(Message)进行UI操作
(1)1个线程(Thread)只能绑定1个循环器(Looper),但可以有多个处理者
(2)1个循环器(Looper)可绑定多个处理者(Handler)
(3)1个处理者(Handler)只能绑定1个循环器(Looper)
Handler机制包括3个重要类:1、处理者 Handler2、循环器 Looper3、消息队列 MessageQueue
记录一次Handler使用步骤
Looper.prepareMainLooper()
为主线程(UI线程)创建1个循环器对象(Looper),同时也会自动创建1个对应的消息队列对象(MessageQueue)
该方法在主线程(UI线程)创建时自动调用,不需手动生成。在Android应用进程启动时,会默认创建1个主线程(ActiviyThread,也叫UI线程),创建时,会自动调用ActivityThread的1个静态main方法=应用程序的入口main()内则会调用Looper.prepareMainLooper()为主线程生成1个Looper对象
public static void main(String[] args) {
... // 仅贴出关键代码
Looper.prepareMainLooper();
// 1. 为主线程创建1个Looper对象,同时生成1个消息队列对象(MessageQueue)
// 方法逻辑类似Looper.prepare()
// 注:prepare():为子线程中创建1个Looper对象
ActivityThread thread = new ActivityThread();
// 2. 创建主线程
Looper.loop();
// 3. 自动开启 消息循环 ->>下面将详细分析
}
Looper.prepare()
为当前线程(子线程)创建1个循环器对象(Looper),同时也会自动创建1个对应的消息队列对象(MessageQueue)
需要在子线程中手动调用改方法
public static final void prepare() {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
// 1. 判断sThreadLocal是否为null,否则抛出异常
//即 Looper.prepare()方法不能被调用两次 = 1个线程中只能对应1个Looper实例
// 注:sThreadLocal = 1个ThreadLocal对象,用于存储线程的变量
sThreadLocal.set(new Looper(true));
// 2. 若为初次Looper.prepare(),则创建Looper对象 & 存放在ThreadLocal变量中
// 注:Looper对象是存放在Thread线程里的
// 源码分析Looper的构造方法->>分析a
}
/**
* 分析a:Looper的构造方法
**/
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
// 1. 创建1个消息队列对象(MessageQueue)
// 即 当创建1个Looper实例时,会自动创建一个与之配对的消息队列对象(MessageQueue)
mRun = true;
mThread = Thread.currentThread();
}
创建主线程时,会自动调用ActivityThread的1个静态的main();而main()内则会调用Looper.prepareMainLooper()为主线程生成1个Looper对象,同时也会生成其对应的MessageQueue对象,即 主线程的Looper对象自动生成,不需手动生成;
而子线程的Looper对象则需手动通过Looper.prepare()创建,在子线程若不手动创建Looper对象 则无法生成Handler对象;
根据Handler的作用(在主线程更新UI),故Handler实例的创建场景 主要在主线程
生成Looper & MessageQueue对象后,则会自动进入消息循环:Looper.loop()
/**
* 源码分析: Looper.loop()
* 作用:消息循环,即从消息队列中获取消息、分发消息到Handler
* 特别注意:
* a. 主线程的消息循环不允许退出,即无限循环
* b. 子线程的消息循环允许退出:调用消息队列MessageQueue的quit()
*/
public static void loop() {
...// 仅贴出关键代码
// 1. 获取当前Looper的消息队列
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
// myLooper()作用:返回sThreadLocal存储的Looper实例;若me为null 则抛出异常
// 即loop()执行前必须执行prepare(),从而创建1个Looper实例
final MessageQueue queue = me.mQueue;
// 获取Looper实例中的消息队列对象(MessageQueue)
// 2. 消息循环(通过for循环)
for (;;) {
// 2.1 从消息队列中取出消息
Message msg = queue.next();
if (msg == null) {
return;
}
// next():取出消息队列里的消息
// 若取出的消息为空,则线程阻塞
// ->> 分析1
// 2.2 派发消息到对应的Handler
msg.target.dispatchMessage(msg);
// 把消息Message派发给消息对象msg的target属性
// target属性实际是1个handler对象
// ->>分析2
// 3. 释放消息占据的资源
msg.recycle();
}
}
/**
* 分析1:queue.next()
* 定义:属于消息队列类(MessageQueue)中的方法
* 作用:出队消息,即从 消息队列中 移出该消息
*/
Message next() {
...// 仅贴出关键代码
// 该参数用于确定消息队列中是否还有消息
// 从而决定消息队列应处于出队消息状态 or 等待状态
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
// nativePollOnce方法在native层,若是nextPollTimeoutMillis为-1,此时消息队列处于等待状态
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
// 出队消息,即 从消息队列中取出消息:按创建Message对象的时间顺序
if (msg != null) {
if (now < msg.when) {
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// 取出了消息
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// 若 消息队列中已无消息,则将nextPollTimeoutMillis参数设为-1
// 下次循环时,消息队列则处于等待状态
nextPollTimeoutMillis = -1;
}
......
}
.....
}
}// 回到分析原处
/**
* 分析2:dispatchMessage(msg)
* 定义:属于处理者类(Handler)中的方法
* 作用:派发消息到对应的Handler实例 & 根据传入的msg作出对应的操作
*/
public void dispatchMessage(Message msg) {
// 1. 若msg.callback属性不为空,则代表使用了post(Runnable r)发送消息
// 则执行handleCallback(msg),即回调Runnable对象里复写的run()
// 上述结论会在讲解使用“post(Runnable r)”方式时讲解
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
// 2. 若msg.callback属性为空,则代表使用了sendMessage(Message msg)发送消息(即此处需讨论的)
// 则执行handleMessage(msg),即回调复写的handleMessage(msg) ->> 分析3
handleMessage(msg);
}
}
/**
* 分析3:handleMessage(msg)
* 注:该方法 = 空方法,在创建Handler实例时复写 = 自定义消息处理方式
**/
public void handleMessage(Message msg) {
... // 创建Handler实例时复写
}
总结:
(1)消息循环的操作 = 消息出队 + 分发给对应的Handler实例
(2)分发给对应的Handler的过程:根据出队消息的归属者通过dispatchMessage(msg)进行分发,最终回调复写的handleMessage(Message msg),从而实现 消息处理 的操作
(3)特别注意:在进行消息分发时(dispatchMessage(msg)),会进行1次发送方式的判断:
若msg.callback属性不为空,则代表使用了post(Runnable r)发送消息,则直接回调Runnable对象里复写的run()若msg.callback属性为空,则代表使用了sendMessage(Message msg)发送消息,则回调复写的handleMessage(msg)
/**
* 具体使用
*/
private Handler mhandler = new Handler(){
// 通过复写handlerMessage()从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
...// 需执行的UI操作
}
};
/**
* 源码分析:Handler的构造方法
* 作用:初始化Handler对象 & 绑定线程
* 注:
* a. Handler需绑定 线程才能使用;绑定后,Handler的消息处理会在绑定的线程中执行
* b. 绑定方式 = 先指定Looper对象,从而绑定了 Looper对象所绑定的线程(因为Looper对象本已绑定了对应线程)
* c. 即:指定了Handler对象的 Looper对象 = 绑定到了Looper对象所在的线程
*/
public Handler() {
this(null, false);
// ->>分析1
}
/**
* 分析1:this(null, false) = Handler(null,false)
*/
public Handler(Callback callback, boolean async) {
...// 仅贴出关键代码
// 1. 指定Looper对象
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
// Looper.myLooper()作用:获取当前线程的Looper对象;若线程无Looper对象则抛出异常
// 即 :若线程中无创建Looper对象,则也无法创建Handler对象
// 故 若需在子线程中创建Handler对象,则需先创建Looper对象
// 注:可通过Loop.getMainLooper()可以获得当前进程的主线程的Looper对象
// 2. 绑定消息队列对象(MessageQueue)
mQueue = mLooper.mQueue;
// 获取该Looper对象中保存的消息队列对象(MessageQueue)
// 至此,保证了handler对象 关联上 Looper对象中MessageQueue
}
当创建Handler对象时,则通过 构造方法 自动关联当前线程的Looper对象 & 对应的消息队列对象(MessageQueue),从而 自动绑定了 实现创建Handler对象操作的线程
总结:
具体使用
Message msg = Message.obtain(); // 实例化消息对象
msg.what = 1; // 消息标识
msg.obj = "AA"; // 消息内容存放
源码分析
/**
* 源码分析:Message.obtain()
* 作用:创建消息对象
* 注:创建Message对象可用关键字new 或 Message.obtain(),建议使用obtain()创建消息对象,避免每次都使用new重新分配内存。(当池内无消息对象可复用,则用关键词new创建)
*/
public static Message obtain() {
// Message内部维护了1个Message池,用于Message消息对象的复用
// 使用obtain()则是直接从池内获取
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
// 建议:使用obtain()”创建“消息对象,避免每次都使用new重新分配内存
}
// 若池内无消息对象可复用,则还是用关键字new创建
return new Message();
}
具体使用
mHandler.sendMessage(msg);
源码分析
/**
* 源码分析:mHandler.sendMessage(msg)
* 定义:属于处理器类(Handler)的方法
* 作用:将消息 发送 到消息队列中(Message ->> MessageQueue)
*/
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
// ->>分析1
}
/**
* 分析1:sendMessageDelayed(msg, 0)
**/
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
// ->> 分析2
}
/**
* 分析2:sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis)
**/
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
// 1. 获取对应的消息队列对象(MessageQueue)
MessageQueue queue = mQueue;
// 2. 调用了enqueueMessage方法 ->>分析3
return enqueueMessage(queue, msg, uptimeMillis);
}
/**
* 分析3:enqueueMessage(queue, msg, uptimeMillis)
**/
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
// 1. 将msg.target赋值为this
// 即 :把 当前的Handler实例对象作为msg的target属性
msg.target = this;
// 请回忆起上面说的Looper的loop()中消息循环时,会从消息队列中取出每个消息msg,然后执行msg.target.dispatchMessage(msg)去处理消息
// 实际上则是将该消息派发给对应的Handler实例
// 2. 调用消息队列的enqueueMessage()
// 即:Handler发送的消息,最终是保存到消息队列->>分析4
return queue.enqueueMessage(msg, uptimeMillis);
}
/**
* 分析4:queue.enqueueMessage(msg, uptimeMillis)
* 定义:属于消息队列类(MessageQueue)的方法
* 作用:入队,即 将消息 根据时间 放入到消息队列中(Message ->> MessageQueue)
* 采用单链表实现:提高插入消息、删除消息的效率
*/
boolean enqueueMessage(Message msg, long when) {
...// 仅贴出关键代码
synchronized (this) {
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
// 判断消息队列里有无消息
// a. 若无,则将当前插入的消息 作为队头 & 若此时消息队列处于等待状态,则唤醒
if (p == null || when == 0 || when < p.when) {
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
// b. 判断消息队列里有消息,则根据 消息(Message)创建的时间 插入到队列中
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p;
prev.next = msg;
}
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
// 之后,随着Looper对象的无限消息循环
// 不断从消息队列中取出Handler发送的消息 & 分发到对应Handler
// 最终回调Handler.handleMessage()处理消息
总结
Handler发送消息的本质 =
将消息对象的target属性设置为当前Handler实例(将Message绑定到Handler,使执行消息循环时将消息派发给对应的Handler实例)
获取对应的消息队列对象MessageQueue,调用MessageQueue.enqueueMessage(),将Handler需发送消息入队到绑定线程的消息队列中。
之后,随着Looper对象的无限消息循环,不断从消息队列中取出Handler发送的消息&根据target分发到对应Handler,最终回调Handler.handleMessage()处理消息
具体使用
private Handler mhandler = new Handler();
// 与方式1的使用不同:此处无复写Handler.handleMessage()
源码分析
/**
* 源码分析:Handler的构造方法
* 作用:
* a. 在此之前,主线程创建时隐式创建Looper对象、MessageQueue对象
* b. 初始化Handler对象、绑定线程 & 进入消息循环
* 此处的源码分析类似方式1,此处不作过多描述
*/
具体使用
mHandler.post(new Runnable() {
@Override
public void run() {
//传入1个Ruunable对象,复写run()从而指定UI操作
... // 需执行的UI操作
}
});
源码分析
/**
* 源码分析:Handler.post(Runnable r)
* 定义:属于处理者类(Handler)中的方法
* 作用:定义UI操作、将Runnable对象封装成消息对象 & 发送 到消息队列中(Message ->> MessageQueue)
* 注:
* a. 相比sendMessage(),post()最大的不同在于,更新的UI操作可直接在重写的run()中定义
* b. 实际上,Runnable并无创建新线程,而是发送 消息 到消息队列中
*/
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
// getPostMessage(r) 的源码分析->>分析1
// sendMessageDelayed()的源码分析 ->>分析2
}
/**
* 分析1:getPostMessage(r)
* 作用:将传入的Runable对象封装成1个消息对象
**/
private static Message getPostMessage(Runnable r) {
// 1. 创建1个消息对象(Message)
Message m = Message.obtain();
// 注:创建Message对象可用关键字new 或 Message.obtain()
// 建议:使用Message.obtain()创建,
// 原因:因为Message内部维护了1个Message池,用于Message的复用,使用obtain()直接从池内获取,从而避免使用new重新分配内存
// 2. 将 Runable对象 赋值给消息对象(message)的callback属性
m.callback = r;
// 3. 返回该消息对象
return m;
} // 回到调用原处
/**
* 分析2:sendMessageDelayed(msg, 0)
* 作用:实际上,从此处开始,则类似方式1 = 将消息入队到消息队列,
* 即 最终是调用MessageQueue.enqueueMessage()
**/
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
// 请看分析3
}
/**
* 分析3:sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis)
**/
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
// 1. 获取对应的消息队列对象(MessageQueue)
MessageQueue queue = mQueue;
// 2. 调用了enqueueMessage方法 ->>分析3
return enqueueMessage(queue, msg, uptimeMillis);
}
/**
* 分析4:enqueueMessage(queue, msg, uptimeMillis)
**/
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
// 1. 将msg.target赋值为this
// 即 :把 当前的Handler实例对象作为msg的target属性
msg.target = this;
// 请回忆起上面说的Looper的loop()中消息循环时,会从消息队列中取出每个消息msg,然后执行msg.target.dispatchMessage(msg)去处理消息
// 实际上则是将该消息派发给对应的Handler实例
// 2. 调用消息队列的enqueueMessage()
// 即:Handler发送的消息,最终是保存到消息队列
return queue.enqueueMessage(msg, uptimeMillis);
}
// 注:实际上从分析2开始,源码 与 sendMessage(Message msg)发送方式相同
消息对象的创建 = 内部 根据Runnable对象而封装
发送到消息队列的逻辑 = 方式1中sendMessage(Message msg)
工作流程类似,区别在于
1、Handler.post不需外部创建消息对象,而是内部根据传入的Runnable对象封装消息对象
2、回调的消息处理方法是:复写Runnable对象的run()
Handler的一般用法 = 新建Handler子类(内部类) 、匿名Handler内部类
/**
* 方式1:新建Handler子类(内部类)
*/
public class MainActivity extends AppCompatActivity {
public static final String TAG = "carson:";
private Handler showhandler;
// 主线程创建时便自动创建Looper & 对应的MessageQueue
// 之后执行Loop()进入消息循环
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
//1. 实例化自定义的Handler类对象->>分析1
//注:此处并无指定Looper,故自动绑定当前线程(主线程)的Looper、MessageQueue
showhandler = new FHandler();
// 2. 启动子线程1
new Thread() {
@Override
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 1;// 消息标识
msg.obj = "AA";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
// 3. 启动子线程2
new Thread() {
@Override
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 2;// 消息标识
msg.obj = "BB";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
}
// 分析1:自定义Handler子类
class FHandler extends Handler {
// 通过复写handlerMessage() 从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case 1:
Log.d(TAG, "收到线程1的消息");
break;
case 2:
Log.d(TAG, " 收到线程2的消息");
break;
}
}
}
}
/**
* 方式2:匿名Handler内部类
*/
public class MainActivity extends AppCompatActivity {
public static final String TAG = "carson:";
private Handler showhandler;
// 主线程创建时便自动创建Looper & 对应的MessageQueue
// 之后执行Loop()进入消息循环
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
//1. 通过匿名内部类实例化的Handler类对象
//注:此处并无指定Looper,故自动绑定当前线程(主线程)的Looper、MessageQueue
showhandler = new Handler(){
// 通过复写handlerMessage()从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case 1:
Log.d(TAG, "收到线程1的消息");
break;
case 2:
Log.d(TAG, " 收到线程2的消息");
break;
}
}
};
// 2. 启动子线程1
new Thread() {
@Override
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 1;// 消息标识
msg.obj = "AA";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
// 3. 启动子线程2
new Thread() {
@Override
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 2;// 消息标识
msg.obj = "BB";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
}
严重警告:This Handler class should be static or leaks might occur(null)
警告原因=该Handler类由于没有设置为静态类,可能会导致内存泄露。
主线程的Looper对象的生命周期 = 该应用程序的生命周期
在Java中,非静态内部类 & 匿名内部类都默认持有 外部类的引用
/**
* 方式1:新建Handler子类(内部类)
*/
public class MainActivity extends AppCompatActivity {
public static final String TAG = "carson:";
private Handler showhandler;
// 主线程创建时便自动创建Looper & 对应的MessageQueue
// 之后执行Loop()进入消息循环
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
//1. 实例化自定义的Handler类对象->>分析1
//注:此处并无指定Looper,故自动绑定当前线程(主线程)的Looper、MessageQueue
showhandler = new FHandler();
// 2. 启动子线程1
new Thread() {
@Override
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 1;// 消息标识
msg.obj = "AA";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
// 3. 启动子线程2
new Thread() {
@Override
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 2;// 消息标识
msg.obj = "BB";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
}
// 分析1:自定义Handler子类
class FHandler extends Handler {
// 通过复写handlerMessage() 从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case 1:
Log.d(TAG, "收到线程1的消息");
break;
case 2:
Log.d(TAG, " 收到线程2的消息");
break;
}
}
}
}
/**
* 方式2:匿名Handler内部类
*/
public class MainActivity extends AppCompatActivity {
public static final String TAG = "carson:";
private Handler showhandler;
// 主线程创建时便自动创建Looper & 对应的MessageQueue
// 之后执行Loop()进入消息循环
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
//1. 通过匿名内部类实例化的Handler类对象
//注:此处并无指定Looper,故自动绑定当前线程(主线程)的Looper、MessageQueue
showhandler = new Handler(){
// 通过复写handlerMessage()从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case 1:
Log.d(TAG, "收到线程1的消息");
break;
case 2:
Log.d(TAG, " 收到线程2的消息");
break;
}
}
};
// 2. 启动子线程1
new Thread() {
@Override
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 1;// 消息标识
msg.obj = "AA";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
// 3. 启动子线程2
new Thread() {
@Override
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 2;// 消息标识
msg.obj = "BB";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
}
}
从上述示例代码可知:
上述的Handler实例的消息队列有2个分别来自线程1、2的消息(分别 为延迟1s、6s)
在Handler消息队列 还有未处理的消息 / 正在处理消息时,消息队列中的Message持有Handler实例的引用
由于Handler = 非静态内部类 / 匿名内部类(2种使用方式),故又默认持有外部类的引用(即MainActivity实例),引用关系如下图
上述的引用关系会一直保持,直到Handler消息队列中的所有消息被处理完毕
在Handler消息队列 还有未处理的消息 / 正在处理消息时,此时若需销毁外部类MainActivity,但由于上述引用关系,垃圾回收器(GC)无法回收MainActivity,从而造成内存泄漏。如下图:
(1)当Handler消息队列 还有未处理的消息 / 正在处理消息时,存在引用关系: “未被处理 / 正处理的消息 -> Handler实例 -> 外部类”
(2)若出现 Handler的生命周期 > 外部类的生命周期 时(即 Handler消息队列 还有未处理的消息 / 正在处理消息 而 外部类需销毁时),将使得外部类无法被垃圾回收器(GC)回收,从而造成 内存泄露
从上面可看出,造成内存泄露的原因有2个关键条件:
1、存在“未被处理 / 正处理的消息 -> Handler实例 -> 外部类” 的引用关系
2、Handler的生命周期 > 外部类的生命周期
(1)原理
1、将Handler的子类设置成 静态内部类:默认不持有外部类的引用,从而使得 “未被处理 / 正处理的消息 -> Handler实例 -> 外部类” 的引用关系 的引用关系 不复存在。
2、使用WeakReference弱引用持有Activity实例:弱引用的对象拥有短暂的生命周期。在垃圾回收器线程扫描时,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存
(2)解决代码
public class MainActivity extends AppCompatActivity {
public static final String TAG = "carson:";
private Handler showhandler;
// 主线程创建时便自动创建Looper & 对应的MessageQueue
// 之后执行Loop()进入消息循环
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
//1. 实例化自定义的Handler类对象->>分析1
//注:
// a. 此处并无指定Looper,故自动绑定当前线程(主线程)的Looper、MessageQueue;
// b. 定义时需传入持有的Activity实例(弱引用)
showhandler = new FHandler(this);
// 2. 启动子线程1
new Thread() {
@Override
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 1;// 消息标识
msg.obj = "AA";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
// 3. 启动子线程2
new Thread() {
@Override
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 2;// 消息标识
msg.obj = "BB";// 消息存放
// b. 传入主线程的Handler & 向其MessageQueue发送消息
showhandler.sendMessage(msg);
}
}.start();
}
// 分析1:自定义Handler子类
// 设置为:静态内部类
private static class FHandler extends Handler{
// 定义 弱引用实例
private WeakReference reference;
// 在构造方法中传入需持有的Activity实例
public FHandler(Activity activity) {
// 使用WeakReference弱引用持有Activity实例
reference = new WeakReference(activity); }
// 通过复写handlerMessage() 从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case 1:
Log.d(TAG, "收到线程1的消息");
break;
case 2:
Log.d(TAG, " 收到线程2的消息");
break;
}
}
}
}
(1)原理
当 外部类(此处以Activity为例) 结束生命周期时(此时系统会调用onDestroy()),清除 Handler消息队列里的所有消息(调用removeCallbacksAndMessages(null))
不仅使得 “未被处理 / 正处理的消息 -> Handler实例 -> 外部类” 的引用关系 不复存在,同时 使得 Handler的生命周期(即 消息存在的时期) 与 外部类的生命周期 同步
(2)解决代码
@Override
protected void onDestroy() {
super.onDestroy();
mHandler.removeCallbacksAndMessages(null);
// 外部类Activity生命周期结束时,同时清空消息队列 & 结束Handler生命周期
}
通过创建一个Handler子类的对象,每个acvivity只需一个Handler对象。后台进程可通过两种方式Handler进行通信:message和Runnable对象,其结果实质都是将在Handler的队列中放入内容,message是放置信息,可以传递一些参数,Handler获取这些信息并将判度如何处理,而Runnable则是直接给出处理的方法。队列就是依次执行,Handler会处理完一个消息或者执行完某个处理在进行下一步,这样不会出现多个线程同时要求进行UI处理而引发的混乱现象。
这些队列中的内容(无论Message还是Runnable)可以要求马上执行,延迟一定时间执行或者指定某个时刻执行,如果将他们放置在队列头,则表示具有最高有限级别,立即执行。这些函数包括有:sendMessage(), sendMessageAtFrontOfQueue(), sendMessageAtTime(), sendMessageDelayed()以及用于在队列中加入Runnable的post(), postAtFrontOfQueue(), postAtTime(),postDelay()。