Darknet评估训练好的网络的性能

训练一个网络,需要评价这个网络,并根据评价的结果想一下为什么是这样,怎样去优化这个网络。这样才是一个闭环,能够有提高,仅仅走一遍训练的流程,是没有意义的。

如何评价训练好的网络

首先网络有一个参数是loss值,这反应了你训练好的网络得到的结果和真实值之间的差距,具体的公式后续会补充,不过查看loss曲线随着迭代次数的增多,如何变化,有助于查看训练是否过拟合,是否学习率太小。

0.Valid命令,将test数据集结果批量生产

./darknet detector valid cfg/voc.data cfg/yolov3-tiny.cfg backup/yolov3-tiny_90000.weights

1.生成loss-iter曲线

在执行训练命令的时候加一下管道,tee一下log,生成的训练的log格式如下:

Loaded: 4.533954 seconds
Region Avg IOU: 0.262313, Class: 1.000000, Obj: 0.542580, No Obj: 0.514735, Avg Recall: 0.162162,  count: 37
Region Avg IOU: 0.175988, Class: 1.000000, Obj: 0.499655, No Obj: 0.517558, Avg Recall: 0.070423,  count: 71
Region Avg IOU: 0.200012, Class: 1.000000, Obj: 0.483404, No Obj: 0.514622, Avg Recall: 0.075758,  count: 66
Region Avg IOU: 0.279284, Class: 1.000000, Obj: 0.447059, No Obj: 0.515849, Avg Recall: 0.134615,  count: 52
1: 629.763611, 629.763611 avg, 0.001000 rate, 6.098687 seconds, 64 images
Loaded: 2.957771 seconds
Region Avg IOU: 0.145857, Class: 1.000000, Obj: 0.051285, No Obj: 0.031538, Avg Recall: 0.069767,  count: 43
Region Avg IOU: 0.257284, Class: 1.000000, Obj: 0.048616, No Obj: 0.027511, Avg Recall: 0.078947,  count: 38
Region Avg IOU: 0.174994, Class: 1.000000, Obj: 0.030197, No Obj: 0.029943, Avg Recall: 0.088889,  count: 45
Region Avg IOU: 0.196278, Class: 1.000000, Obj: 0.076030, No Obj: 0.030472, Avg Recall: 0.087719,  count: 57
2: 84.804230, 575.267700 avg, 0.001000 rate, 5.959159 seconds, 128 images

格式为

Region Avg IOU: 这个是预测出的bbox和实际标注的bbox的交集 除以 他们的并集。显然,这个数值越大,说明预测的结果越好。
Avg Recall: 这个表示平均召回率, 意思是 检测出物体的个数 除以 标注的所有物体个数。
count: 标注的所有物体的个数。 如果 count = 6, recall = 0.66667, 就是表示一共有6个物体(可能包含不同类别,这个不管类别),然后我预测出来了4个,所以Recall 就是 4 除以 6 = 0.66667 。
有一行跟上面不一样的,最开始的是iteration次数,然后是train loss,然后是avg train loss, 然后是学习率, 然后是一batch的处理时间, 然后是已经一共处理了多少张图片。 重点关注 train loss 和avg train loss,这两个值应该是随着iteration增加而逐渐降低的。如果loss增大到几百那就是训练发散了,如果loss在一段时间不变,就需要降低learning rate或者改变batch来加强学习效果。当然也可能是训练已经充分。这个需要自己判断。

将下面的python代码保存为drawcurve.py。并执行

import argparse
import sys
import matplotlib.pyplot as plt
def main(argv):
    parser = argparse.ArgumentParser()
    parser.add_argument("log_file",  help = "path to log file"  )
    parser.add_argument( "option", help = "0 -> loss vs iter"  )
    args = parser.parse_args()
    f = open(args.log_file)
    lines  = [line.rstrip("\n") for line in f.readlines()]
    # skip the first 3 lines
    lines = lines[3:]
    numbers = {'1','2','3','4','5','6','7','8','9','0'}
    iters = []
    loss = []
    for line in lines:
        if line[0] in numbers:
            args = line.split(" ")
            if len(args) >3:
                iters.append(int(args[0][:-1]))
                loss.append(float(args[2]))
    plt.plot(iters,loss)
    plt.xlabel('iters')
    plt.ylabel('loss')
    plt.grid()
    plt.show()
if __name__ == "__main__":
    main(sys.argv)

2. 查看训练网络的召回率

更改example/detector.c

//list *plist = get_paths("data/coco_val_5k.list");
list *plist = get_paths("./scripts/2020_test.txt");
#重新编译
make -j8
#执行recall 函数
./darknet detector recall cfg/voc.data cfg/yolov3-tiny.cfg backup/yolov3-tiny_final.weights

最后得到的log如下:

#具体的格式为解释如下:
#Number Correct Total Rps/Img        IOU         Recall 
   10    20    20	RPs/Img: 2.18	IOU: 83.15%	Recall:100.00%
   11    21    21	RPs/Img: 2.08	IOU: 83.29%	Recall:100.00%
   12    24    25	RPs/Img: 2.15	IOU: 78.43%	Recall:96.00%
   13    25    26	RPs/Img: 2.14	IOU: 78.40%	Recall:96.15%
   14    29    30	RPs/Img: 2.27	IOU: 77.61%	Recall:96.67%
   15    30    31	RPs/Img: 2.25	IOU: 77.74%	Recall:96.77%
   16    34    35	RPs/Img: 2.35	IOU: 77.76%	Recall:97.14%
   17    35    36	RPs/Img: 2.39	IOU: 77.42%	Recall:97.22%
   18    38    39	RPs/Img: 2.42	IOU: 78.20%	Recall:97.44%
   19    39    40	RPs/Img: 2.35	IOU: 78.19%	Recall:97.50%

Number表示处理到第几张图片。
Correct表示正确的识别除了多少bbox。这个值算出来的步骤是这样的,丢进网络一张图片,网络会预测出很多bbox,每个bbox都有其置信概率,概率大于threshold的bbox与实际的bbox,也就是labels中txt的内容计算IOU,找出IOU最大的bbox,如果这个最大值大于预设的IOU的threshold,那么correct加一。
Total表示实际有多少个bbox。
Rps/img表示平均每个图片会预测出来多少个bbox。
IOU: 这个是预测出的bbox和实际标注的bbox的交集 除以 他们的并集。显然,这个数值越大,说明预测的结果越好。
Recall召回率, 意思是检测出物体的个数 除以 标注的所有物体个数。通过代码我们也能看出来就是Correct除以Total的值。

3.计算训练网络的mAP

首先通过valid命令,遍历一遍测试数据集,跑出来训练好的网络在这个测试数据集的结果,命令如下

./darknet detector valid cfg/voc.data cfg/yolov3-tiny.cfg backup/yolov3-tiny_90000.weights

注意:在执行该命令的时候,需要你的当前路径下有一个results的文件夹,不然会报segmentation fault的错误。

然后将这两个python脚本放在你的路径下
reval_voc.py

#!/usr/bin/env python

# Adapt from ->
# --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick
# --------------------------------------------------------
# <- Written by Yaping Sun

"""Reval = re-eval. Re-evaluate saved detections."""

import os, sys, argparse
import numpy as np
import cPickle

from voc_eval import voc_eval

def parse_args():
    """
    Parse input arguments
    """
    parser = argparse.ArgumentParser(description='Re-evaluate results')
    parser.add_argument('output_dir', nargs=1, help='results directory',
                        type=str)
    parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str)
    parser.add_argument('--year', dest='year', default='2017', type=str)
    parser.add_argument('--image_set', dest='image_set', default='test', type=str)

    parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str)

    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)

    args = parser.parse_args()
    return args

def get_voc_results_file_template(image_set, out_dir = 'results'):
    filename = 'comp4_det_' + image_set + '_{:s}.txt'
    path = os.path.join(out_dir, filename)
    return path

def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'):
    annopath = os.path.join(
        devkit_path,
        'VOC' + year,
        'Annotations',
        '{:s}.xml')
    imagesetfile = os.path.join(
        devkit_path,
        'VOC' + year,
        'ImageSets',
        'Main',
        image_set + '.txt')
    cachedir = os.path.join(devkit_path, 'annotations_cache')
    aps = []
    # The PASCAL VOC metric changed in 2010
    use_07_metric = True if int(year) < 2010 else False
    print 'VOC07 metric? ' + ('Yes' if use_07_metric else 'No')
    if not os.path.isdir(output_dir):
        os.mkdir(output_dir)
    for i, cls in enumerate(classes):
        if cls == '__background__':
            continue
        filename = get_voc_results_file_template(image_set).format(cls)
        rec, prec, ap = voc_eval(
            filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
            use_07_metric=use_07_metric)
        aps += [ap]
        print('AP for {} = {:.4f}'.format(cls, ap))
        with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f:
            cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
    print('Mean AP = {:.4f}'.format(np.mean(aps)))
    print('~~~~~~~~')
    print('Results:')
    for ap in aps:
        print('{:.3f}'.format(ap))
    print('{:.3f}'.format(np.mean(aps)))
    print('~~~~~~~~')
    print('')
    print('--------------------------------------------------------------')
    print('Results computed with the **unofficial** Python eval code.')
    print('Results should be very close to the official MATLAB eval code.')
    print('-- Thanks, The Management')
    print('--------------------------------------------------------------')



if __name__ == '__main__':
    args = parse_args()

    output_dir = os.path.abspath(args.output_dir[0])
    with open(args.class_file, 'r') as f:
        lines = f.readlines()

    classes = [t.strip('\n') for t in lines]

    print 'Evaluating detections'
    do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir)

以及voc_eval.py:

# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------

import xml.etree.ElementTree as ET
import os
import cPickle
import numpy as np

def parse_rec(filename):
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        #obj_struct['pose'] = obj.find('pose').text
        #obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)

    return objects

def voc_ap(rec, prec, use_07_metric=False):
    """ ap = voc_ap(rec, prec, [use_07_metric])
    Compute VOC AP given precision and recall.
    If use_07_metric is true, uses the
    VOC 07 11 point method (default:False).
    """
    if use_07_metric:
        # 11 point metric
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.
    else:
        # correct AP calculation
        # first append sentinel values at the end
        mrec = np.concatenate(([0.], rec, [1.]))
        mpre = np.concatenate(([0.], prec, [0.]))

        # compute the precision envelope
        for i in range(mpre.size - 1, 0, -1):
            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

        # to calculate area under PR curve, look for points
        # where X axis (recall) changes value
        i = np.where(mrec[1:] != mrec[:-1])[0]

        # and sum (\Delta recall) * prec
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap

def voc_eval(detpath,
             annopath,
             imagesetfile,
             classname,
             cachedir,
             ovthresh=0.5,
             use_07_metric=False):
    """rec, prec, ap = voc_eval(detpath,
                                annopath,
                                imagesetfile,
                                classname,
                                [ovthresh],
                                [use_07_metric])

    Top level function that does the PASCAL VOC evaluation.

    detpath: Path to detections
        detpath.format(classname) should produce the detection results file.
    annopath: Path to annotations
        annopath.format(imagename) should be the xml annotations file.
    imagesetfile: Text file containing the list of images, one image per line.
    classname: Category name (duh)
    cachedir: Directory for caching the annotations
    [ovthresh]: Overlap threshold (default = 0.5)
    [use_07_metric]: Whether to use VOC07's 11 point AP computation
        (default False)
    """
    # assumes detections are in detpath.format(classname)
    # assumes annotations are in annopath.format(imagename)
    # assumes imagesetfile is a text file with each line an image name
    # cachedir caches the annotations in a pickle file

    # first load gt
    if not os.path.isdir(cachedir):
        os.mkdir(cachedir)
    cachefile = os.path.join(cachedir, 'annots.pkl')
    # read list of images
    with open(imagesetfile, 'r') as f:
        lines = f.readlines()
    imagenames = [x.strip() for x in lines]

    if not os.path.isfile(cachefile):
        # load annots
        recs = {}
        for i, imagename in enumerate(imagenames):
            recs[imagename] = parse_rec(annopath.format(imagename))
            if i % 100 == 0:
                print 'Reading annotation for {:d}/{:d}'.format(
                    i + 1, len(imagenames))
        # save
        print 'Saving cached annotations to {:s}'.format(cachefile)
        with open(cachefile, 'w') as f:
            cPickle.dump(recs, f)
    else:
        # load
        with open(cachefile, 'r') as f:
            recs = cPickle.load(f)

    # extract gt objects for this class
    class_recs = {}
    npos = 0
    for imagename in imagenames:
        R = [obj for obj in recs[imagename] if obj['name'] == classname]
        bbox = np.array([x['bbox'] for x in R])
        difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
        det = [False] * len(R)
        npos = npos + sum(~difficult)
        class_recs[imagename] = {'bbox': bbox,
                                 'difficult': difficult,
                                 'det': det}

    # read dets
    detfile = detpath.format(classname)
    with open(detfile, 'r') as f:
        lines = f.readlines()

    splitlines = [x.strip().split(' ') for x in lines]
    image_ids = [x[0] for x in splitlines]
    confidence = np.array([float(x[1]) for x in splitlines])
    BB = np.array([[float(z) for z in x[2:]] for x in splitlines])

    # sort by confidence
    sorted_ind = np.argsort(-confidence)
    sorted_scores = np.sort(-confidence)
    BB = BB[sorted_ind, :]
    image_ids = [image_ids[x] for x in sorted_ind]

    # go down dets and mark TPs and FPs
    nd = len(image_ids)
    tp = np.zeros(nd)
    fp = np.zeros(nd)
    for d in range(nd):
        R = class_recs[image_ids[d]]
        bb = BB[d, :].astype(float)
        ovmax = -np.inf
        BBGT = R['bbox'].astype(float)

        if BBGT.size > 0:
            # compute overlaps
            # intersection
            ixmin = np.maximum(BBGT[:, 0], bb[0])
            iymin = np.maximum(BBGT[:, 1], bb[1])
            ixmax = np.minimum(BBGT[:, 2], bb[2])
            iymax = np.minimum(BBGT[:, 3], bb[3])
            iw = np.maximum(ixmax - ixmin + 1., 0.)
            ih = np.maximum(iymax - iymin + 1., 0.)
            inters = iw * ih

            # union
            uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
                   (BBGT[:, 2] - BBGT[:, 0] + 1.) *
                   (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)

            overlaps = inters / uni
            ovmax = np.max(overlaps)
            jmax = np.argmax(overlaps)

        if ovmax > ovthresh:
            if not R['difficult'][jmax]:
                if not R['det'][jmax]:
                    tp[d] = 1.
                    R['det'][jmax] = 1
                else:
                    fp[d] = 1.
        else:
            fp[d] = 1.

    # compute precision recall
    fp = np.cumsum(fp)
    tp = np.cumsum(tp)
    rec = tp / float(npos)
    # avoid divide by zero in case the first detection matches a difficult
    # ground truth
    prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
    ap = voc_ap(rec, prec, use_07_metric)

    return rec, prec, ap
 python reval_voc.py --voc_dir ../scripts/VOCdevkit --year 2020 --image_set test --class ../data/voc.names .

结果应该如下:

Evaluating detections
VOC07 metric? Yes
AP for bicycle = 0.4111
AP for bus = 0.2424
AP for car = 0.3861
AP for motorbike = 0.3818
AP for person = 0.4779
Mean AP = 0.3799
~~~~~~~~
Results:
0.411
0.242
0.386
0.382
0.478
0.380
~~~~~~~~

但我自己实际操作时遇到如下问题:

(base) [xl@GPU1 yolov3_mAP_test]$ python reval_voc.py --voc_dir ../scripts/VOCdevkit --year 2020 --image_set test --class ../data/voc.names .
Evaluating detections
VOC07 metric? No
Traceback (most recent call last):
  File "reval_voc.py", line 101, in <module>
    do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir)
  File "reval_voc.py", line 70, in do_python_eval
    use_07_metric=use_07_metric)
  File "/home/xl/ADAS_4_modules/lights_limited/darknet/yolov3_mAP_test/voc_eval.py", line 148, in voc_eval
    BB = BB[sorted_ind, :]
IndexError: too many indices for array

---------------------------------------------------------~~补充--------------------------------------------------------------------

针对上面这个问题,找到解决方法了(开心(* *)):

Darknet评估训练好的网络的性能_第1张图片
运行:
Darknet评估训练好的网络的性能_第2张图片
详见 将 Faster R-CNN 用在自己的数据集上,感谢博客的作者。

后续操作

后续可以根据上面的准确率计算结果,优化模型。

参考网址

Darknet 评估训练好的网络的性能
YOLOv3 mAP计算教程
linux下yolov3学习(三):计算map,绘制precision-recall
自学yolo入门到进阶

你可能感兴趣的:(深度学习,操作技能)